CSE 421 Algorithms: Divide and Conquer

Larry Ruzzo

algorithm design paradigms: divide and conquer

Outline:

General Idea

Review of Merge Sort

Why does it work?
Importance of balance
Importance of super-linear growth
Some interesting applications
Closest points
Integer Multiplication
Finding \& Solving Recurrences

Divide \& Conquer

Reduce problem to one or more sub-problems of the same type
Typically, each sub-problem is at most a constant fraction of the size of the original problem
Subproblems typically disjoint
Often gives significant, usually polynomial, speedup
Examples:
Binary Search, Mergesort, Quicksort (roughly),
Strassen's Algorithm, integer multiplication, powering, FFT, ...

Motivating Example: Mergesort

" $\mathrm{C}[\mathrm{i}]=$ smaller of $\mathrm{U}[\mathrm{a}], \mathrm{L}[\mathrm{b}]$ and correspondingly a++ or $\mathrm{b}++$, while being careful about running past end of either";
Return C;
\}
Time: $\Theta(\mathrm{n} \log \mathrm{n})$

divide \& conquer - the key idea

Why does it work? Suppose we've already invented DumbSort, taking time n^{2}

Try Just One Level of divide \& conquer:
DumbSort(first $\mathrm{n} / 2$ elements) $\quad \mathrm{O}\left((\mathrm{n} / 2)^{2}\right)$
DumbSort(last $n / 2$ elements) $\quad \mathrm{O}\left((\mathrm{n} / 2)^{2}\right)$
Merge results
$\mathrm{O}(\mathrm{n})$

Time: $2(n / 2)^{2}+n=n^{2} / 2+n \ll n^{2}$
D\&C in a nutshell
Almost twice as fast!

Moral I: "two halves are better than a whole"
Two problems of half size are better than one full-size problem, even given $O(n)$ overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: "If a little's good, then more's better"
Two levels of D\&C would be almost 4 times faster, 3 levels almost 8 , etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead").
In the limit: you've just rediscovered mergesort!

Moral 3: unbalanced division good, but less so:
$(. \ln)^{2}+(.9 n)^{2}+\mathrm{n}=.82 \mathrm{n}^{2}+\mathrm{n}$
The 18% savings compounds significantly if you carry recursion to more levels, actually giving O (nlogn), but with a bigger constant. So worth doing if you can't get 50-50 split, but balanced is better if you can.
This is intuitively why Quicksort with random splitter is good badly unbalanced splits are rare, and not instantly fatal.
Moral 4: but consistent, completely unbalanced division doesn't help much:
$(I)^{2}+(n-I)^{2}+n=n^{2}-n+2$
Little improvement here.

Mergesort: (recursively) sort 2 half-lists, then merge results.
$T(n)=2 T(n / 2)+c n, n \geq 2$
$T(I)=0$

Solution: $\Theta(n \log n)$ (details later)

$\mathrm{O}(\mathrm{n})$
work
per
level

Example:
 Counting Inversions

Inversion Problem

Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
$\left(a_{i}, a_{j}\right)$ is an inversion if $i<j$ and $a_{i}>a_{j}$

$$
4,6,1,7,3,2,5
$$

Problem: given a permutation, count the number of inversions
This can be done easily in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
Can we do better?

Counting inversions can be use to measure closeness of ranked preferences

People rank 20 movies, based on their rankings you cluster people who like the same types of movies

Can also be used to measure nonlinear correlation

Inversion Problem

Let $a_{1}, \ldots a_{n}$ be a permutation of $1 \ldots n$
$\left(a_{i}, a_{j}\right)$ is an inversion if $i<j$ and $a_{i}>a_{j}$

$$
4,6,1,7,3,2,5
$$

Problem: given a permutation, count the number of inversions
This can be done easily in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time
Can we do better?

Counting Inversions

11	12	4	1	7	2	3	15	9	5	16	8	6	13	10	14

Count inversions on left half
Count inversions on right half
Count the inversions between the halves

Count the Inversions

Can we count inversions between sub-problems in $\mathrm{O}(\mathrm{n})$ time?

Yes - Count inversions while merging

Standard merge algorithm - add to inversion count when an element is moved from the right array to the solution. (Add how much? Why not left array?)

Counting inversions while merging

1	4	11	12

5	8	9	16

6	10	13	14

Indicate the number of inversions for each element detected when merging

Inversions

Counting inversions between two sorted lists
$\mathrm{O}(1)$ per element to count inversions

Algorithm summary
Satisfies the "Standard recurrence"
$T(n)=2 T(n / 2)+c n$

A Divide \& Conquer Example: Closest Pair of Points

Given n points and arbitrary distances between them, find the closest pair. (E.g., think of distance as airfare

- definitely not Euclidean distance!)

Must look at all n choose 2 pairwise distances, else any one you didn't check might be the shortest.

Also true for Euclidean distance in I-2 dimensions?

closest pair of points: 1 dimensional version

Given n points on the real line, find the closest pair

Closest pair is adjacent in ordered list
Time $O(n \log n)$ to sort, if needed
Plus $O(n)$ to scan adjacent pairs
Key point: do not need to calc distances between all pairs: exploit geometry + ordering

closest pair of points: 2 dimensional version

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
Special case of nearest neighbor, Euclidean MST, Voronoi.
fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta\left(n^{2}\right)$ comparisons.

I-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same \times coordinate.

Just to simplify presentation

Divide. Sub-divide region into 4 quadrants.

Divide. Sub-divide region into 4 quadrants.
Obstacle. Impossible to ensure $\mathrm{n} / 4$ points in each piece, so the "balanced subdivision" goal may be elusive/problematic.

Algorithm.

Divide: draw vertical line L with $\approx n / 2$ points on each side.

closest pair of points

Algorithm.

Divide: draw vertical line L with $\approx n / 2$ points on each side.
Conquer: find closest pair on each side, recursively.

closest pair of points

Algorithm.

Divide: draw vertical line L with $\approx n / 2$ points on each side.
Conquer: find closest pair on each side, recursively.
Combine: find closest pair with one point in each side.
Return best of 3 solutions.

Find closest pair with one point in each side, assuming distance $<\delta$.

Find closest pair with one point in each side, assuming distance $<\delta$.

Observation: suffices to consider points within δ of line L.

Find closest pair with one point in each side,

 assuming distance $<\delta$.Observation: suffices to consider points within δ of line L.
Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.

Find closest pair with one point in each side,

 assuming distance $<\delta$.Observation: suffices to consider points within δ of line L.
Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate. Only check pts within 8 in sorted list!

Def. Let s_{i} have the $\mathrm{i}^{\text {th }}$ smallest y-coordinate among points in the 2δ-width-strip.
Claim. If $|\mathrm{j}-\mathrm{i}| \geq 8$, then the distance between s_{i} and s_{i} is $>\delta$.
Pf: No two points lie in the same $\delta / 2$-by- $\delta / 2$ square:

$$
\sqrt{\left(\frac{\delta}{2}\right)^{2}+\left(\frac{\delta}{2}\right)^{2}}=\frac{\sqrt{2}}{2} \delta \approx 0.7 \delta<\delta
$$

so ≤ 8 points within $+\delta$ of $y\left(s_{i}\right)$.


```
Closest-Pair(p
    if(n <= ??) return ??
    Compute separation line L such that half the points
    are on one side and half on the other side.
    \delta
    \delta
    \delta}=\operatorname{min}(\mp@subsup{\delta}{1}{},\mp@subsup{\delta}{2}{}
    Delete all points further than \delta from separation line L
    Sort remaining points p[1]...p[m] by y-coordinate.
    for i = 1..m
        k = 1
        while i+k <= m && p[i+k].y< p[i].y + \delta
            \delta= min(\delta, distance between p[i] and p[i+k]);
            k++;
    return \delta.
}
```

Analysis, I: Let $\mathrm{D}(\mathrm{n})$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $\mathrm{n} \geq$ I points

$$
D(n) \leq\left\{\begin{array}{cl}
0 & n=1 \\
2 D(n / 2)+7 n & n>1
\end{array}\right\} \Rightarrow D(n)=O(n \log n)
$$

BUT - that's only the number of distance calculations

What if we counted comparisons?

Analysis, II: Let C(n) be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $n \geq$ I points
$C(n) \leq\left\{\begin{array}{cc}0 & n=1 \\ 2 C(n / 2)+k n \log n & n>1\end{array}\right\} \Rightarrow C(n)=O\left(n \log ^{2} n\right)$
for some constant k
Q. Can we achieve $O(n \log n)$?
A. Yes. Don't sort points from scratch each time.

Sort by x at top level only.
Each recursive call returns δ and list of all points sorted by y
Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Code is longer \& more complex
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ vs $\mathrm{O}\left(\mathrm{n}^{2}\right)$ may hide 10 x in constant?

How many points?

\mathbf{n}	Speedup: $\mathbf{n}^{\mathbf{2}} /\left(1 \mathbf{1 0} \mathbf{n} \log _{\mathbf{2}} \mathbf{n}\right)$
10	0.3
100	1.5
1,000	10
10,000	75
100,000	602
$1,000,000$	5,017
$10,000,000$	43,004

Going From Code to Recurrence

Carefully define what you're counting, and write it down!
"Let $\mathrm{C}(\mathrm{n})$ be the number of comparisons between sort keys used by MergeSort when sorting a list of length $n \geq 1$ "
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
Write Recurrence(s)

One compare per element added to merged list, except the last. (loops, copying data, parameter passing, etc.)

Carefully define what you're counting, and write it down!
"Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $\mathrm{n} \geq \mathrm{I}$ points" In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted. Write Recurrence(s)

Basic operations:

Compute separation line L such that half the points are on one side and half on the other side.

$\delta_{2}=$ Closest-Faif(rignt half) Recursive calls (2)
$\delta=\min \left(\dot{U}_{1}, \delta_{2}\right)$
Delete all points further than δ from separation line L
Sort remaining points $\mathrm{p}[1] \ldots \mathrm{p}[\mathrm{m}]$ by y -coordinate.
for $i=1 . . m$
$\mathrm{k}=1$
Basic operations at this recursive level while $i+k<=m$ ã $p[i+k] \cdot y<p[i] \cdot y+\delta$
$\delta=\min (\delta$ distance between $p[i]$ and $p[i+k]) ;$ k++;
return δ.

Analysis, l: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $\mathrm{n} \geq$ I points

$$
D(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 D(n / 2)+7 n & n>1
\end{array}\right\} \Rightarrow D(n)=O(n \log n)
$$

BUT - that's only the number of distance calculations

What if we counted comparisons?

Carefully define what you're counting, and write it down!
"Let $D(n)$ be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $\mathrm{n} \geq$ I points"
In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.
Write Recurrence(s)

Analysis, II: Let $\mathrm{C}(\mathrm{n})$ be the number of comparisons of coordinates/distances in the Closest-Pair Algorithm when run on $\mathrm{n} \geq \mathrm{I}$ points

$$
\begin{aligned}
& C(n) \leq\left\{\begin{array}{cc}
0 & n=1 \\
2 C(n / 2)+k_{4} n \log n+1 & n>1
\end{array}\right\} \Rightarrow C(n)=O\left(n \log ^{2} n\right) \\
& \text { for some } k_{4} \leq k_{1}+k_{2}+k_{3}+15
\end{aligned}
$$

Q. Can we achieve time $O(n \log n)$?
A. Yes. Don't sort points from scratch each time.

Sort by x at top level only.
Each recursive call returns δ and list of all points sorted by y Sort by merging two pre-sorted lists.

$$
T(n) \leq 2 T(n / 2)+O(n) \Rightarrow \mathrm{T}(n)=O(n \log n)
$$

Integer Multiplication

Add. Given two n-bit integers a and b, compute $\mathrm{a}+\mathrm{b}$.

Add	1	1	1	1	1	1	0	1	
	+	1	1	0	1	0	1	0	1
Add		0	1	1	1	1	1	0	1
	I	0	1	0	1	0	0	1	0

O(n) bit operations.

Add. Given two n-bit integers a and b, compute $\mathrm{a}+\mathrm{b}$.
$O(n)$ bit operations.

Multiply. Given two n-bit integers a and b,
compute $\mathrm{a} \times \mathrm{b}$.
The "grade school" method:

To multiply two 2-digit integers:

Multiply four I-digit integers.
Add, shift some 2-digit integers to obtain result.

$$
\begin{aligned}
x & =10 \cdot x_{1}+x_{0} \\
y & =10 \cdot y_{1}+y_{0} \\
x y & =\left(10 \cdot x_{1}+x_{0}\right)\left(10 \cdot y_{1}+y_{0}\right) \\
& =100 \cdot x_{1} y_{1}+10 \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

Same idea works for long integers can split them into 4 half-sized ints (" 10 " becomes " 10 k ", $\mathrm{k}=$ length/2)

divide \& conquer multiplication: warmup

To multiply two n -bit integers:

Multiply four $1 / 2 n$-bit integers.
Shift/add four n-bit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot y_{1}+y_{0}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}
\end{aligned}
$$

$$
\begin{array}{lllllllll}
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & y_{1} y_{0} \\
* & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1
\end{array} x_{1} x_{0}
$$

$$
101001001
$$

$$
x_{0} \cdot y_{I}
$$

$$
0011000011 \quad x_{1} \cdot y_{0}
$$

$$
\mathrm{T}(n)=\underbrace{4 T(n / 2)}_{\text {reurrive calls }}+\underbrace{\Theta(n)}_{\text {add, shift }} \Rightarrow \mathrm{T}(n)=\Theta\left(n^{2}\right)
$$

assumes n is a power of 2

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =\left(2^{n / 2} \cdot x_{1}+x_{0}\right)\left(2^{n / 2} \cdot v_{1}+y_{0}\right) \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2}\left(\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0}\right.
\end{aligned}
$$

Well, ok, 4 for 3 is more accurate...

$$
\begin{array}{ll}
\alpha & =x_{1}+x_{0} \\
\beta & =y_{1}+y_{0} \\
\alpha \beta & =\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right) \\
& =x_{1} y_{1}+\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
\left(x_{1} y_{0}+x_{0} y_{1}\right) & =\alpha \beta-x_{1} y_{1}-x_{0} y_{0}
\end{array}
$$

To multiply two n -bit integers:
Add two pairs of $1 / 2 n$ bit integers.
Multiply three pairs of $1 / 2 n$-bit integers.
Add, subtract, and shift n-bit integers to obtain result.

$$
\begin{aligned}
x & =2^{n / 2} \cdot x_{1}+x_{0} \\
y & =2^{n / 2} \cdot y_{1}+y_{0} \\
x y & =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(x_{1} y_{0}+x_{0} y_{1}\right)+x_{0} y_{0} \\
& =2^{n} \cdot x_{1} y_{1}+2^{n / 2} \cdot\left(\left(x_{1}+x_{0}\right)\left(y_{1}+y_{0}\right)-x_{1} y_{1}-x_{0} y_{0}\right)+x_{0} y_{0} \\
& \mathrm{~A}
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $\mathrm{O}\left(\mathrm{n}^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \text { Sloppy version: } T(n) \leq 3 T(n / 2)+O(n) \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recursive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \text { Sloppy version: } T(n) \leq 3 T(n / 2)+O(n) \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

Best: Solve the exact recurrence
$2^{\text {nd }}$ best: Solve the sloppy version
Almost always gives the right asymptotics
Alternatively, you can often change the algorithm to simplify the recurrence so that you can solve it. E.g.,"sloppy" = exact if Get rid of $[\cdot\rceil$ and $[\cdot]$ by "padding" n to $2\left[{ }^{[\log n}{ }_{2} n\right]$ Get rid of $[1+n / 2\rceil$ by peeling off one bit: $T(n / 2)+O(n)$

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in $O\left(n^{1.585}\right)$ bit operations.

$$
\begin{aligned}
& \mathrm{T}(n) \leq \underbrace{T(\lfloor n / 2\rfloor)+T(\lceil n / 2\rceil)+T(1+\lceil n / 2\rceil)}_{\text {recurive calls }}+\underbrace{\Theta(n)}_{\text {add, subtract, shift }} \\
& \text { Sloppy version: } T(n) \leq 3 T(n / 2)+O(n) \\
& \Rightarrow \mathrm{T}(n)=O\left(n^{\log _{2} 3}\right)=O\left(n^{1.585}\right)
\end{aligned}
$$

Alternatively, you can often change the algorithm to simplify the recurrence so that you can solve it. E.g.,"sloppy" becomes exact if
Kill $\lceil\cdot] \&[\cdot]:$ pad n to $\left.2^{[\log }{ }_{2} n\right]$
Kill $\lceil I+n / 2\rceil:$ peel off one bit: $T(n / 2)+O(n)$

multiplication - the bottom line

Naïve: $\quad \Theta\left(\mathrm{n}^{2}\right)$
Karatsuba: $\quad \Theta\left(\mathbf{n}^{1.59 \ldots}\right)$
Amusing exercise: generalize Karatsuba to do 5 size $\mathrm{n} / 3$ subproblems $\rightarrow \Theta$ ($\left.\mathrm{n}^{1.46 \ldots}\right)$
Best known: $\Theta(\mathrm{n} \log \mathrm{n} \log \log \mathrm{n})$
"Fast Fourier Transform"
but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)
High precision arithmetic IS important for crypto, among other uses

Recurrences

Above: Where they come from, how to find them

Next: how to solve them

Mergesort: (recursively) sort 2 half-lists, then merge results.

$$
\begin{aligned}
& T(n)=2 T(n / 2)+c n, n \geq 2 \\
& T(I)=0
\end{aligned}
$$

Solution: $\Theta(n \log n)$ (details later)

$\mathrm{O}(\mathrm{n})$ work per level
now!

Solve: $\quad T(1)=c$

$$
T(n)=2 T(n / 2)+c n
$$

Solve: $\quad T(1)=c$

$$
T(n)=4 T(n / 2)+c n
$$

Solve: $\quad T(1)=c$

$$
T(n)=3 T(n / 2)+c n
$$

Hevel Num Size Work

	0	$1=3^{0}$	n	cn
,	1	$3=31$	n/2	$3 \mathrm{cn} / 2$
-	2	$9=3^{2}$	n/4	$9 \mathrm{cn} / 4$
	\ldots
	i	3^{i}	$\mathrm{n} / 2^{\text {i }}$	$3^{\text {i }} \mathrm{cn} / 2^{\text {i }}$
	\ldots	\ldots	...	\ldots
	k-I	3^{k-1}	$\mathrm{n} / 2^{\mathrm{k}-1}$	$3^{k-1} \mathrm{cn} / 2^{k-1}$
$\mathrm{n}=2^{\mathrm{k}} ; \mathrm{k}=\log _{2} \mathrm{n}$	k	3^{k}	$\mathrm{n} / 2^{\mathrm{k}}=1$	3^{k} (I$)$
Total Work: $\mathrm{T}(\mathrm{n})=$		${ }_{i=0} 3^{i}$	12^{i}	

Theorem: for $x \neq I$,

$$
I+x+x^{2}+x^{3}+\ldots+x^{k}=\left(x^{k+1}-I\right) /(x-I)
$$

proof:

$$
\begin{aligned}
y & =1+x+x^{2}+x^{3}+\ldots+x^{k} \\
x y & =x+x^{2}+x^{3}+\ldots+x^{k}+x^{k+1} \\
x y-y & =x^{k+1}-1 \\
y(x-1) & =x^{k+1}-1 \\
y & =\left(x^{k+1}-1\right) /(x-1)
\end{aligned}
$$

Solve: $\quad T(1)=c$

$$
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \quad \text { (cont.) }
$$

$$
\begin{aligned}
T(n) & =\sum_{i=0}^{k} 3^{i} c n / 2^{i} \\
& =c n \sum_{i=0}^{k} 3^{i} / 2^{i} \\
& =c n \sum_{i=0}^{k}\left(\frac{3}{2}\right)^{i} \\
& =c n \frac{\left(\frac{3}{2}\right)^{k+1}-1}{\left(\frac{3}{2}\right)-1}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{i=0}^{k} x^{i}= \\
\frac{x^{k+1}-1}{x-1} \\
(x \neq 1)
\end{gathered}
$$

Solve: $\quad T(1)=c$

$$
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \quad \text { (cont.) }
$$

$$
\begin{aligned}
\operatorname{cn} \frac{\left(\frac{3}{2}\right)^{k+1}-1}{\left(\frac{3}{2}\right)-1} & =2 \operatorname{cn}\left(\left(\frac{3}{2}\right)^{k+1}-1\right) \\
& <2 \operatorname{cn}\left(\frac{3}{2}\right)^{k+1} \\
& =3 \operatorname{cn}\left(\frac{3}{2}\right)^{k} \\
& =3 \operatorname{cn} \frac{3^{k}}{2^{k}}
\end{aligned}
$$

Solve: $\quad T(1)=c$

$$
\mathrm{T}(\mathrm{n})=3 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn} \quad \text { (cont.) }
$$

$$
\begin{aligned}
3 c n \frac{3^{k}}{2^{k}} & =3 c n \frac{3^{\log _{2} n}}{2^{\log _{2} n}} & & \mathrm{a}^{\log _{\mathrm{b}} n} \\
& =3 c n \frac{3^{\log _{2} n}}{n} & & =\left(\mathrm{b}^{\log _{\mathrm{b}} \mathrm{a}}\right)^{\log _{\mathrm{b}} n} \\
& =3 c 3^{\log _{2} n} & & =\left(\mathrm{b}^{\log _{\mathrm{b}} \mathrm{n}}\right)^{\log _{\mathrm{b}} \mathrm{a}} \\
& =3 c\left(n^{\log _{2} 3}\right) & & =\mathrm{n}^{\log _{\mathrm{b}} \mathrm{a}}
\end{aligned}
$$

divide and conquer - master recurrence

$T(n)=a T(n / b)+c n^{k}$ for $n>b$ then

$$
\begin{array}{ll}
a>b^{k} \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) & {[\text { many subprobs } \rightarrow \text { leaves dominate }]} \\
a<b^{k} \Rightarrow T(n)=\Theta\left(n^{k}\right) & {[\text { few subprobs } \rightarrow \text { top level dominates }]} \\
a=b^{k} \Rightarrow T(n)=\Theta\left(n^{k} \log n\right) & {[\text { balanced } \rightarrow \text { all log } n \text { levels contribute }]}
\end{array}
$$

Fine print:
$\mathrm{T}(\mathrm{I})=\mathrm{d} ; \mathrm{a} \geq \mathrm{I} ; \mathrm{b}>\mathrm{I} ; \mathrm{c}, \mathrm{d}, \mathrm{k} \geq 0 ; \mathrm{n}=\mathrm{b}^{\mathrm{t}}$ for some $\mathrm{t}>0$; a, b, k, t integers. True even if it is $\lceil n / b\rceil$ instead of n / b.

master recurrence: proof sketch

Expand recurrence as in earlier examples, to get

$$
T(n)=n^{h}(d+c S)
$$

where $h=\log _{b}(a)$ (and $n^{h}=$ number of tree leaves) and $S=\sum_{j=1}^{\log _{b} n} X^{j}$, where $x=b^{k} / a$.

If $c=0$ the sum S is irrelevant, and $T(n)=O\left(n^{h}\right)$: all work happens in the base cases, of which there are n^{h}, one for each leaf in the recursion tree. If $c>0$, then the sum matters, and splits into 3 cases (like previous slide):

$$
\text { if } x<I \text {, then } S<x /(I-x)=O(1) . \quad[S \text { is the first } \log n \text { terms of the }
$$ infinite series with that sum.]

if $x=I$, then $S=\log _{b}(n)=O(\log n) . \quad[$ All terms in the sum are I and there are that many terms.]
if $x>I$, then $S=x \cdot\left(x^{1+\log _{b}(n)}-I\right) /(x-I)$. [And after some algebra, $n^{h} * S=O\left(n^{k}\right)$.]

Another Example:
 Exponentiation

Power(a,n)
Input: integer n and number a
Output: a^{n}
Obvious algorithm
n-I multiplications
Observation:
if n is even, $n=2 m$, then $a^{n}=a^{m} \bullet a^{m}$

Power(a,n)
if $\mathrm{n}=0$ then return(I)
if $\mathrm{n}=\mathrm{l}$ then return(a)
$x \leftarrow \operatorname{Power}(\mathrm{a},\lfloor\mathrm{n} / 2\rfloor)$
$x \leftarrow x^{\bullet} x$
if n is odd then

$$
x \leftarrow a^{\bullet} x
$$

return (x)

Let $M(n)$ be number of multiplies
Worst-case

$$
M(n)=\left\{\begin{array}{cc}
0 & n \leq 1 \\
M(\lfloor n / 2\rfloor)+2 & n>1
\end{array}\right.
$$

By master theorem

$$
M(n)=O(\log n) \quad(a=l, b=2, k=0)
$$

More precise analysis:

$$
M(n)=\left\lfloor\log _{2} n\right\rfloor+(\# \text { of l's in n's binary representation })-I
$$

Time is $O(M(n))$ if numbers < word size, else also depends on length, multiply algorithm

a practical application - RSA

Instead of a^{n} want $a^{n} \bmod N$
$a^{i+j} \bmod N=\left(\left(a^{i} \bmod N\right) \cdot\left(a^{j} \bmod N\right)\right) \bmod N$ same algorithm applies with each $x \cdot y$ replaced by $((x \bmod N) \cdot(y \bmod N)) \bmod N$

In RSA cryptosystem (widely used for security) need $a^{n} \bmod N$ where a, n, N each typically have 1024 bits Power: at most 2048 multiplies of 1024 bit numbers
relatively easy for modern machines
Naive algorithm: 2^{1024} multiplies

Utility:

Correctness often easy; often faster
Idea:
"Two halves are better than a whole"
if the base algorithm has super-linear complexity.
"If a little's good, then more's better"
repeat above, recursively
Analysis: recursion tree or Master Recurrence
Applications: Many.
Binary Search, Merge Sort, (Quicksort), Closest Points, Integer Multiply, Exponentiation,...

