
CSE 421: Intro Algorithms

2: Analysis

Larry Ruzzo

1

2015-01-07

Elaine presented an introduction to analysis
and “big-O” on the whiteboard. Her notes
are linked from the 421 web page.

The Powerpoint slides below supplement
that (plus a bit of new material, especially
“little-o”).

2

outline

Why big-O: measuring algorithm efficiency
What’s big-O: definition and related concepts
Reasoning with big-O: examples & applications

polynomials
exponentials

logarithms
sums

Polynomial Time

3

Why big-O: measuring algorithm efficiency

4

efficiency

Our correct TSP algorithm was incredibly slow
No matter what computer you have

As a 2nd example, for large problems, mergesort
beats insertion sort – n log n vs n2 matters a lot

Even tho the alg is more complex & inner loop is slower
No matter what computer you have

We want a general theory of “efficiency” that is
Simple

Objective
Relatively independent of changing technology

Measures algorithm, not code
But still predictive – “theoretically bad” algorithms should
be bad in practice and vice versa (usually)

5

defining efficiency

“Runs fast on typical real problem instances”

Pro:
sensible, bottom-line-oriented

Con:
moving target (diff computers, compilers, Moore’s law)

highly subjective (how fast is “fast”? What’s “typical”?)

6

defining efficiency

“Runs fast on a specific suite of benchmarks”

Pro:
again sensible, bottom-line-oriented

Con:
all the problems above

are benchmarks representative
algorithms can be “tuned” to the well-known benchmarks

generating/maintaining benchmarks is a burden
benchmarking a new algorithm is a lot of work

7

defining efficiency

Instead:
a) Give up on detailed timing, focus on scaling

Nanoseconds matter of course, but we often want to
push to bigger problems tomorrow than we can solve
today, so an algorithm that scales as n2, say, will very
likely beat one that grows as 2n or n10 or even n3, even if
the later uses fewer nanoseconds for today’s n.

b) Give up on “typical,” focus on worst case behavior
Over all inputs of size n, how fast are we on the worst?
Removes all debate about “typical” / “average.”

Overall, these yield a big win in terms of technology
independence, ease of analysis, robustness

8

computational complexity

The time complexity of an algorithm associates
a number T(n), the worst-case time the
algorithm takes, with each problem size n.

Mathematically,
T: N+ → R
i.e.,T is a function mapping positive integers
(problem sizes) to positive real numbers (number
of steps).
“Reals” so, e.g., we can say sqrt(n) instead of ⎡sqrt(n)⎤
“Positive” so, e.g., log(n) and 2n/n aren’t problematic

9

computational complexity

Problem size

T
im

e

T(n)

10

why worst-case analysis?

Appropriate for time-critical applications
E.g. avionics, nuclear reactors

Unlike Average-Case, no debate over the right
definition

If worst ≫ average, then (a) alg is doing something pretty
subtle, & (b) are hard instances really that rare?

Analysis often much easier
Result is often representative of “typical” problem
instances
Of course there are exceptions…

11

computational complexity: general goals

Asymptotic growth rate, i.e., characterize growth
rate of worst-case run time as a function of problem
size, up to a constant factor, e.g. T(n) = O(n2)

Why not try to be more precise?
Average-case, e.g., is hard to define, analyze
Technological variations (computer, compiler, OS, …)
easily 10x or more
Being more precise is much more work
A key question is “scale up”: if I can afford this today, how
much longer will it take when my business is 2x larger?
(E.g. today: cn2, next year: c(2n)2 = 4cn2 : 4 x longer.) ���
Big-O analysis is adequate to address this.

12

Big-O: a math notation for an upper bound on
the asymptotic growth rate of a function

E.g., if f(n) = value of the nth prime, f(n) = O(n log n)

In CS, commonly used to describe run time of
algorithms, usually worst case run time, but
could be other run time functions.

E.g., for Quicksort

Tbest(n) = O(n)
Tavg(n) = O(n log n)

Tworst(n) = O(n2)

13

What’s big-O: definition and related concepts

14

O-notation, etc.

Given two functions f and g: N+ → R

f(n) is O(g(n)) iff there is a constant c > 0 so that
f(n) is eventually always ≤ c g(n)

f(n) is Ω(g(n)) iff there is a constant c > 0 so that
f(n) is eventually always ≥ c g(n)

f(n) is Θ(g(n)) iff there is are constants c1, c2 > 0 so that ���
eventually always c1g(n) ≤ f(n) ≤ c2g(n)

“Eventually always P(n)” means “∃n0 s.t.∀n>n0 P(n) is true.” I.e., there
can be exceptions, but only for finitely many “small” values of n.

15

Upper
Bounds

Lower
Bounds

Both

computational complexity

Problem size

T
im

e

T(n)

16

Example: T(n) = Θ(n log2n)
since for all problem sizes n > n0,
the worst case run time T(n) is
between n log2n and 2 n log2n

computational complexity

Problem size

T
im

e

T(n)

n0

(Irrelevant)

17

example

18

Initialization

Outer Loop

Inner Loop

A typical program with initialization and two nested
loops might have runtime something like this

0 50 100 150 200

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

n

Ti
m
e

example

19

0 50 100 150 200

0
10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

n

Ti
m
e

(Irrelevant)

Initialization

Outer Loop

Inner Loop

If T(n) = n2 + 30n + 5000, then T(n) = Θ(n2), ���
since for all n ≥ 135, we have n2 ≤ T(n) ≤1.5 n2

n0=135

Reasoning with big-O: examples & applications

polynomials
exponentials

logarithms
sums

20

0 2 4 6 8 10 12

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

examples

Show 10n2-16n+100 is O(n2) :
10n2-16n+100 ≤ 10n2 + 100
 = 10n2 + 102

 ≤ 10n2 + n2 = 11n2 for all n ≥ 10
∴ O(n2) [and also O(n3), O(n4), O(n2.5), …]

21

0 2 4 6 8 10 12

0
20
0

40
0

60
0

80
0

10
00

12
00

14
00

examples

Show 10n2-16n+100 is Ω(n2) :
10n2-16n+100 ≥ 10n2 - 16n
 ≥ 10n2 - n2 = 9n2 for all n ≥16 ���
∴ Ω(n2) [and also Ω(n), Ω(n1.5), …]
Therefore also 10n2-16n+100 is Θ(n2) ���
[but not Θ(n1.999) or Θ(n2.001)]

22

asymptotic bounds for polynomials

Polynomials: ���
p(n) = a0 + a1n + … + adnd is Θ(nd) if ad > 0���

Proof:

p(n) = a0 + a1 n + … + adnd

≤ |a0| + |a1|n + … + adnd

≤ |a0|nd + |a1|nd + … + adnd (for n ≥ 1)

= c nd, where c = (|a0| + |a1| + … + |ad-1| + ad)

 ∴ p(n) = O(nd)
 Exercise: show that p(n) = Ω(nd)

Hint: this direction is trickier; focus on the “worst case”
where all coefficients except ad are negative.

23

another example of working with O-Ω-Θ notation

Example: For any a, and any b > 0, (n+a)b is Θ(nb)

(n+a)b ≤ (2n)b for n ≥ |a|���
= 2bnb ���
= cnb for c = 2b ���

so (n+a)b is O(nb) ���

(n+a)b ≥ (n/2)b for n ≥ 2|a| (even if a < 0)
= 2-bnb ���
= c’n for c’ = 2-b ���

so (n+a)b is Ω (nb)

24

more examples: tricks for sums

Example: ∑1 ≤ i ≤ n i = Θ(n2)

Proof:
(a) An upper bound: each term is ≤ the max term

∑1 ≤ i ≤ n i ≤ ∑1 ≤ i ≤ n n = n2 = O(n2)

(b) A lower bound: each term is ≥ the min term
∑1 ≤ i ≤ n i ≥ ∑1 ≤ i ≤ n 1 = n = Ω(n)

This is valid, but a weak bound. ���
Better: pick a large subset of large terms

∑1 ≤ i ≤ n i ≥ ∑n/2 ≤ i ≤ n n/2 ≥ ⎣n/2⎦2 = Ω(n2)

25

E.g. : for i = 1..n {
 for j=1 to i {

 . . .
}}

properties

Transitivity.
If f = O(g) and g = O(h) then f = O(h).
If f = Ω(g) and g = Ω(h) then f = Ω(h).
If f = Θ(g) and g = Θ(h) then f = Θ(h).

Additivity.
If f = O(h) and g = O(h) then f + g = O(h).
If f = Ω(h) and g = Ω(h) then f + g = Ω(h).
If f = Θ(h) and g = O(h) then f + g = Θ(h).

Proofs are left as exercises.

26

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)

(proof below)

n1001.01n

In short, every exponential
grows faster than every
polynomial!

27

logarithms

Example: For any a, b>1 logan is Θ(logbn)

28€

loga b = x means ax = b

aloga b = b

(aloga b)logb n = blogb n = n
(loga b)(logb n) = loga n
c logb n = loga n for the constant c = loga b
So :
logb n =Θ(loga n) =Θ(logn)

definition

Corollary: base of a log factor is usually irrelevant,
asymptotically. E.g. “O(n log n)” [but nlog 8 ≠ O(nlog 8)]2

8

0 200 400 600 800 1000

0
5

10
15

20
25

30

n

n^.50

n^.33

log(n)

1 10 100 1000

0
5

10
15

20
25

30

n (log scale)

n^.50 n^.33

log(n)

polynomial vs logarithm

Logarithms: ���
For all x > 0, (no matter how small) log n = O(nx)

29

log grows slower than every polynomial

domination: little-o

f(n) is o(g(n)) iff limn→∞ f(n)/g(n)=0
that is, g(n) dominates f(n) ���

If a ≤ b then na is O(nb) ���

If a < b then na is o(nb)

f(n) = O(g(n)) vs f(n) = o(g(n)) are analogs to ≤ vs <

Note: ���
if f(n) is Θ(g(n)) then it cannot be o(g(n))

30

working with little-o

n2 = o(n3) [Use algebra]:

n3 = o(en) [Use L’Hospital’s rule 3 times]:

€

limn→∞

n2

n3
= limn→∞

1
n

= 0

€

limn→∞

n3

en
= limn→∞

3n2

en
= limn→∞

6n
en

= limn→∞

6
en

= 0

31

polynomial vs exponential

 ���
For all r > 1 (no matter how small) ���
and all d > 0, (no matter how large) ���
nd = O(rn)
nd = o(rn), even
Exercise: prove this, using���

tricks from previous slide

n1001.01n

In short, every exponential
grows faster than every
polynomial!

32

ratio test

Given two functions f(n) and g(n), if

Inconclusive if the limit doesn’t ���
exist. E.g., no limit for f/g at right, ���
but g(n) ≤ f(n) = O(f(n))

limn→∞

f(n)
g(n)

= c for some constant c>0
0

#
$
%

&%

'
(
%

)%
,

then f(n) =Θ(g(n))
f(n) = o(g(n)) [⇒ O(g(n))]

#
$
%

&%

'
(
%

)%
, respectively.

f(n) = n if n is even
n2 otherwise

!
"
#

$#

g(n) = n

33

big-theta, etc. are not always “nice”

34

€

f (n) =
n2, n even
n, n odd

"

$

%
&
'

f(n) ≠ Θ(na) for any a.

Fortunately, such nasty
cases are rare

n log n ≠ Θ(na) for any a, either, but at least it’s simpler.

a subtle pitfall

“Theorem”: ∑1 ≤ i ≤ n i = O(n)

“Proof:” (by induction on n)

basis: ∑1 ≤ i ≤ 1 i = 1 = O(1)
induction step:

∑1 ≤ i ≤ n i = (∑1 ≤ i ≤ n-1 i) + n

= O(n-1) + n (by ind. hyp.)
= O(n)

Q. Where’s the flaw??

A. Never use “big-O” like this in an induction;
instead, explicitly show the implicit constant “c”; in
the above “proof,” you’ll see “c” become “c+1”…

FA
LS

E!

35

“One-Way Equalities”

2 + 2 is 4 2n2 + 5 n is O(n3)
2 + 2 = 4 2n2 + 5 n = O(n3)
4 = 2 + 2 O(n3) = 2n2 + 5 n

All dogs are mammals All mammals are dogs

Bottom line:
OK to put big-O in R.H.S. of equality, but not left.

Better, but less common, notation: T(n) ∈ O(f(n)). ���
I.e., O(f(n)) is the set of all functions that grow no
more rapidly than some constant times f. ���
Replace “=” by “∈” or “⊆” as appropriate: e.g.:
 2n2 + 5 n ∈ O(n2) ⊆ O(n3)

36

Polynomial Time

37

the complexity class P: polynomial time

P: The set of problems solvable by algorithms
with running time O(nd) for some constant d ���

(d is a constant independent of the input size n)

Nice scaling property: there is a constant c s.t. ���
doubling n, time increases only by a factor of c. ���

(E.g., c ~ 2d)

Contrast with exponential: For any constant c, there
is a d such that n → n+d increases time by a factor of
more than c.

(E.g., c = 100 and d = 7 for 2n vs 2n+7)

38

polynomial vs exponential growth

22n

2n/10

1000n2

22n

2n/10

1000n2

39

why it matters

not only get very big, but do
so abruptly, which likely yields
erratic performance on small
instances

40

another view of poly vs exp

Next year’s computer will be 2x faster. If I can solve
problem of size n0 today, how large a problem can I
solve in the same time next year?

Complexity Size Increase E.g. T=1012

O(n) n0 → 2n0 1012 → 2 x 1012

O(n2) n0 → √2 n0 106 → 1.4 x 106

O(n3) n0 → 3√2 n0 104 → 1.25 x 104

2n /10 n0 → n0+10 400 → 410

2n n0 → n0 +1 40 → 41

41

why “polynomial”?

Point is not that n2000 is a nice time bound, or that
the differences among n and 2n and n2 are negligible.

Rather, simple theoretical tools may not easily
capture such differences, whereas exponentials are
qualitatively different from polynomials, so more
amenable to theoretical analysis.

“My problem is in P” is a starting point for a more detailed
analysis

“My problem is not in P” may suggest that you need to
shift to a more tractable variant, or otherwise readjust
expectations

42

Summary

43

summary

Big O is a math notation defining an upper bound on growth
rate of a function (typically a function lacking a simple
analytic formula.)

In CS, that function is often the worst case run time of some
algorithm (as a function of input size, n, where “worst case”
means max time over all inputs of size n.)

BUT, it can also be used for other functions, like best- or
average-case time/space/…, so be clear/careful re defn.

Big Ω is analogous math notation for lower bounds

Big Θ: upper and lower bounds simultaneously

These notations deliberately define growth rate only up to a
(hidden) constant factor, essentially because (a) scaling
matters more than the constant, and (b) the constant is
strongly technology-dependent (language, code, compiler,
processor, …) making it much more work to pin down.

44

summary

So, a typical initial goal for algorithm analysis is to
find a

reasonably tight, i.e., Θ if possible
asymptotic, i.e., O or Θ
bound on usually upper bound
worst case running time

as a function of problem size

This is rarely the last word, but often helps separate
good algorithms from blatantly poor ones – so you
can concentrate on the good ones!
As one important example, poly time algorithms are
almost always preferable to exponential time ones.

45

