CSE 421
Algorithms
Richard Anderson
Lecture 24
Network Flow Applications
Today’s topics

• Network flow reductions
 – Multi source flow
 – Reviewer Assignment
• Baseball Scheduling
• Image Segmentation
• Strip Mining
• Reading: 7.5, 7.6, 7.10-7.12
Multi-source network flow

• Multi-source network flow
 – Sources s_1, s_2, \ldots, s_k
 – Sinks t_1, t_2, \ldots, t_j

• Solve with Single source network flow
Bipartite Matching

• A graph $G=(V,E)$ is bipartite if the vertices can be partitioned into disjoint sets X, Y

• A matching M is a subset of the edges that does not share any vertices

• Find a matching as large as possible
Converting Matching to Network Flow
Resource Allocation:
Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_j, there is a list of paper L_{j1}, \ldots, L_{jk} that R_j is qualified to review
Baseball elimination

• Can the Dinosaurs win the league?

• Remaining games:
 – AB, AC, AD, AD, AD, BC, BC, BC, BD, CD

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ants</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Bees</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Cockroaches</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Dinosaurs</td>
<td>1</td>
<td>5</td>
</tr>
</tbody>
</table>

A team wins the league if it has strictly more wins than any other team at the end of the season.
A team ties for first place if no team has more wins, and there is some other team with the same number of wins.
Baseball elimination

• Can the Fruit Flies win or tie the league?

• Remaining games:

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ants</td>
<td>17</td>
<td>12</td>
</tr>
<tr>
<td>Bees</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Cockroaches</td>
<td>16</td>
<td>7</td>
</tr>
<tr>
<td>Dinosaurs</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>Earthworms</td>
<td>14</td>
<td>10</td>
</tr>
<tr>
<td>Fruit Flies</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Assume Fruit Flies win remaining games

• Fruit Flies are tied for first place if no team wins more than 19 games

• Allowable wins
 – Ants (2)
 – Bees (3)
 – Cockroaches (3)
 – Dinosaurs (5)
 – Earthworms (5)

• 18 games to play

<table>
<thead>
<tr>
<th>Team</th>
<th>W</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ants</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Bees</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Cockroaches</td>
<td>16</td>
<td>9</td>
</tr>
<tr>
<td>Dinosaurs</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Earthworms</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>Fruit Flies</td>
<td>19</td>
<td>15</td>
</tr>
</tbody>
</table>
Remaining games

Minimum Cut Applications

• Image Segmentation
• Open Pit Mining / Task Selection Problem
• Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with \(s \) in S and \(t \) in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T
Image Segmentation

- Separate foreground from background
Image analysis

- a_i: value of assigning pixel i to the foreground
- b_i: value of assigning pixel i to the background
- p_{ij}: penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A,B) = \sum_{i \in A} a_i + \sum_{j \in B} b_j - \sum_{(i,j) \in E, i \in A, j \in B} p_{ij}$
Pixel graph to flow graph
Mincut Construction

\[s \]

\[a_v \]

\[p_{vu} \]

\[u \]

\[p_{uv} \]

\[v \]

\[b_v \]

\[t \]
Open Pit Mining
Application of Min-cut

- Open Pit Mining Problem
- Task Selection Problem
- Reduction to Min Cut problem

S, T is a cut if S, T is a partition of the vertices with s in S and t in T
The capacity of an S, T cut is the sum of the capacities of all edges going from S to T
Open Pit Mining

• Each unit of earth has a profit (possibly negative)
• Getting to the ore below the surface requires removing the dirt above
• Test drilling gives reasonable estimates of costs
• Plan an optimal mining operation
Mine Graph
Determine an optimal mine
Generalization

- Precedence graph $G=(V,E)$
- Each v in V has a profit $p(v)$
- A set F is *feasible* if when w in F, and (v,w) in E, then v in F.
- Find a feasible set to maximize the profit
Min cut algorithm for profit maximization

• Construct a flow graph where the minimum cut identifies a feasible set that maximizes profit
Precedence graph construction

- Precedence graph $G=(V,E)$
- Each edge in E has infinite capacity
- Add vertices s, t
- Each vertex in V is attached to s and t with finite capacity edges
Find a finite value cut with at least two vertices on each side of the cut.
The sink side of a finite cut is a feasible set

• No edges permitted from S to T
• If a vertex is in T, all of its ancestors are in T
Setting the costs

- If $p(v) > 0$,
 - $\text{cap}(v,t) = p(v)$
 - $\text{cap}(s,v) = 0$
- If $p(v) < 0$
 - $\text{cap}(s,v) = -p(v)$
 - $\text{cap}(v,t) = 0$
- If $p(v) = 0$
 - $\text{cap}(s,v) = 0$
 - $\text{cap}(v,t) = 0$
Minimum cut gives optimal solution
Why?
Computing the Profit

- Cost(W) = \(\sum_{w \in W; p(w) < 0} p(w)\)
- Benefit(W) = \(\sum_{w \in W; p(w) > 0} p(w)\)
- Profit(W) = Benefit(W) – Cost(W)

- Maximum cost and benefit
 - \(C = \text{Cost}(V)\)
 - \(B = \text{Benefit}(V)\)
Express Cap(S,T) in terms of B, C, Cost(T), Benefit(T), and Profit(T)

\[\text{Cap}(S,T) = \text{Cost}(T) + \text{Ben}(S) = \text{Cost}(T) + \text{Ben}(S) + \text{Ben}(T) - \text{Ben}(T) \]
\[= B + \text{Cost}(T) - \text{Ben}(T) = B - \text{Profit}(T) \]