Shortest Paths with Dynamic Programming
Shortest Path Problem

• Dijkstra’s Single Source Shortest Paths Algorithm
 – $O(m \log n)$ time, positive cost edges

• Bellman-Ford Algorithm
 – $O(mn)$ time for graphs with negative cost edges
Lemma

• If a graph has no negative cost cycles, then the **shortest** paths are **simple** paths

• Shortest paths have at most n-1 edges
Shortest paths with a fixed number of edges

• Find the shortest path from v to w with exactly k edges
Express as a recurrence

• $\text{Opt}_k(w) = \min_x [\text{Opt}_{k-1}(x) + c_{xw}]$
• $\text{Opt}_0(w) = 0$ if $v=w$ and infinity otherwise
Algorithm, Version 1

foreach w

 $M[0, w] = \text{infinity}$;

$M[0, v] = 0$;

for $i = 1$ to $n-1$

 foreach w

 $M[i, w] = \min_x (M[i-1, x] + \text{cost}[x, w])$;
Algorithm, Version 2

foreach w
 \[M[0, w] = \text{infinity}; \]
M[0, v] = 0;
for i = 1 to n-1
 foreach w
 \[M[i, w] = \min(M[i-1, w], \min_x(M[i-1,x] + \text{cost}[x,w])); \]
Algorithm, Version 3

foreach w

 $M[w] = \text{infinity};$

$M[v] = 0;$

for $i = 1$ to $n-1$

 foreach w

 $M[w] = \min(M[w], \min_x(M[x] + \text{cost}[x,w]))$
Correctness Proof for Algorithm 3

• Key lemma – at the end of iteration i, for all w, $M[w] \leq M[i, w]$;

• Reconstructing the path:
 – Set $P[w] = x$, whenever $M[w]$ is updated from vertex x
If the pointer graph has a cycle, then the graph has a negative cost cycle

• If $P[w] = x$ then $M[w] \geq M[x] + \text{cost}(x,w)$
 – Equal when w is updated
 – $M[x]$ could be reduced after update
• Let $v_1, v_2, \ldots v_k$ be a cycle in the pointer graph with (v_k, v_1) the last edge added
 – Just before the update
 • $M[v_j] \geq M[v_{j+1}] + \text{cost}(v_{j+1}, v_j)$ for $j < k$
 • $M[v_k] > M[v_1] + \text{cost}(v_1, v_k)$
 – Adding everything up
 • $0 > \text{cost}(v_1, v_2) + \text{cost}(v_2, v_3) + \ldots + \text{cost}(v_k, v_1)$
Negative Cycles

• If the pointer graph has a cycle, then the graph has a negative cycle
• Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles
Finding negative cost cycles

- What if you want to find negative cost cycles?
Foreign Exchange Arbitrage

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td></td>
<td>0.8</td>
<td>1.2</td>
</tr>
<tr>
<td>EUR</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAD</td>
<td>0.6</td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>
Network Flow
Outline

• Network flow definitions
• Flow examples
• Augmenting Paths
• Residual Graph
• Ford Fulkerson Algorithm
• Cuts
• Maxflow-MinCut Theorem
Network Flow Definitions

- Capacity
- Source, Sink
- Capacity Condition
- Conservation Condition
- Value of a flow
Flow Example

![Flow Example Diagram]

- Source (s) to u: 20
- u to v: 30
- v to t: 20
- t to Target (t): 10
Flow assignment and the residual graph
Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e) \geq 0$
- Problem, assign flows $f(e)$ to the edges such that:
 - $0 \leq f(e) \leq c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is as large as possible
Flow Example
Find a maximum flow

Construct a maximum flow and indicate the flow value
Find a maximum flow
Augmenting Path Algorithm

• Augmenting path
 – Vertices v_1, v_2, \ldots, v_k
 • $v_1 = s$, $v_k = t$
 • Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k-1$
Find two augmenting paths
Residual Graph

• Flow graph showing the remaining capacity
• Flow graph G, Residual Graph G_R
 – G: edge e from u to v with capacity c and flow f
 – G_R: edge e' from u to v with capacity $c - f$
 – G_R: edge e'' from v to u with capacity f
Residual Graph
Build the residual graph

Residual graph:
Augmenting Path Lemma

• Let $P = v_1, v_2, \ldots, v_k$ be a path from s to t with minimum capacity b in the residual graph.
• b units of flow can be added along the path P in the flow graph.
Proof

• Add b units of flow along the path P
• What do we need to verify to show we have a valid flow after we do this?
Ford-Fulkerson Algorithm (1956)

while not done

 Construct residual graph G_R
 Find an s-t path P in G_R with capacity $b > 0$
 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations