Announcements

• Homework Deadlines
 – HW 7: Wednesday, November 18
 – HW 8: Wednesday, November 25
 – HW 9: Friday, December 4
 – HW 10: Friday, December 11

• Final Exam
 – Monday, December 14, 2:30-4:20 pm
One dimensional dynamic programming: Interval scheduling

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]
Two dimensional dynamic programming

K-segment linear approximation

\[\text{Opt}_k[j] = \min_i \{ \text{Opt}_{k-1}[i] + E_{i,j} \} \text{ for } 0 < i < j \]
Two dimensional dynamic programming

Subset sum and knapsack

\[\text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + w_j) \]

\[\text{Opt}[j, K] = \max(\text{Opt}[j-1, K], \text{Opt}[j-1, K-w_j] + v_j) \]

	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
4																			
3																			
2																			
1																			
Aside: Negative weights in subset sum

- Alternate formulation of Subset Sum dynamic programming algorithm
 - \(\text{Sum}[i, K] = \text{true} \) if there is a subset of \(\{w_1, \ldots, w_k\} \) that sums to exactly \(K \), false otherwise
 - \(\text{Sum} [i, K] = \text{Sum} [i - 1, K] \textbf{ OR } \text{Sum}[i - 1, K - w_i] \)
- To allow for negative numbers, we need to fill in the array between \(K_{min} \) and \(K_{max} \)
Dynamic Programming Examples

• Examples
 – Optimal Billboard Placement
 • Text, Solved Exercise, Pg 307
 – Linebreaking with hyphenation
 • Compare with HW problem 6, Pg 317
 – String approximation
 • Text, Solved Exercise, Page 309
Billboard Placement

• Maximize income in placing billboards
 – $b_i = (p_i, v_i)$, v_i: value of placing billboard at position p_i

• Constraint:
 – At most one billboard every five miles

• Example
 – $\{(6,5), (8,6), (12, 5), (14, 1)\}$
Design a Dynamic Programming Algorithm for Billboard Placement

- Compute Opt[1], Opt[2], ..., Opt[n]
- What is Opt[k]?

Input b_1, \ldots, b_n, where $b_i = (p_i, v_i)$, position and value of billboard i
Solution

j = 0; // j is five miles behind the current position

// the last valid location for a billboard, if one placed at P[k]

for k := 1 to n

 while (P[j] < P[k] - 5)
 j := j + 1;

 j := j - 1;

 Opt[k] = Max(Opt[k-1], V[k] + Opt[j]);
String approximation

• Given a string S, and a library of strings $B = \{b_1, \ldots b_m\}$, construct an approximation of the string S by using copies of strings in B.

$B = \{abab, bbbaaa, ccbb, ccaacc\}$

$S = abacbcbbbaabbbccbbcccaabab$
Formal Model

- Strings from B assigned to non-overlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
 - MisMatch(i, j) – number of mismatched characters of b_j, when aligned starting with position i in s.
Design a Dynamic Programming Algorithm for String Approximation

• Compute Opt[1], Opt[2], . . . , Opt[n]
• What is Opt[k]?

Target string $S = s_1s_2\ldots s_n$
Library of strings $B = \{b_1, \ldots, b_m\}$
$\text{MisMatch}(i,j) = \text{number of mismatched characters with } b_j \text{ when aligned starting at position } i \text{ of } S.$
\[\text{Opt}[k] = \text{fun}(\text{Opt}[0], \ldots, \text{Opt}[k-1]) \]

- How is the solution determined from subproblems?

Target string \(S = s_1s_2\ldots s_n \)
Library of strings \(B = \{b_1, \ldots, b_m\} \)
\(\text{MisMatch}(i,j) = \text{number of mismatched characters with } b_j \text{ when aligned starting at position } i \text{ of } S. \)
Solution

for i := 1 to n
 Opt[k] = Opt[k-1] + \delta;
for j := 1 to |B|
 p = i - \text{len}(b_j);
 Opt[k] = \min(\text{Opt}[k], \text{Opt}[p-1] + \gamma \text{MisMatch}(p, j));
Longest Common Subsequence

• $C=c_1\ldots c_g$ is a subsequence of $A=a_1\ldots a_m$ if C can be obtained by removing elements from A (but retaining order)

• LCS(A, B): A maximum length sequence that is a subsequence of both A and B

ocurrentec attacggct
occurrence tacgacca
Determine the LCS of the following strings

BARTHOLEMEWSIMPSON

KRUSTYTHECLOWN
String Alignment Problem

• Align sequences with gaps

 CAT TGA AT

 CAGAT AGGA

• Charge δ_x if character x is unmatched
• Charge γ_{xy} if character x is matched to character y

Note: the problem is often expressed as a minimization problem, with $\gamma_{xx} = 0$ and $\delta_x > 0$
LCS Optimization

• $A = a_1a_2...a_m$
• $B = b_1b_2...b_n$

• $\text{Opt}[j, k]$ is the length of $LCS(a_1a_2...a_j, b_1b_2...b_k)$
Optimization recurrence

If \(a_j = b_k \), \(\text{Opt}[j,k] = 1 + \text{Opt}[j-1, k-1] \)

If \(a_j \neq b_k \), \(\text{Opt}[j,k] = \max(\text{Opt}[j-1,k], \text{Opt}[j,k-1]) \)
Give the Optimization Recurrence for the String Alignment Problem

- Charge δ_x if character x is unmatched
- Charge γ_{xy} if character x is matched to character y

$\text{Opt}[j, k] =$

Let $a_j = x$ and $b_k = y$
Express as minimization
Code to compute Opt[j,k]
Storing the path information

\[A[1..m], \ B[1..n] \]

for \(i := 1 \) to \(m \) \(\text{ Opt}[i, 0] := 0; \)
for \(j := 1 \) to \(n \) \(\text{ Opt}[0,j] := 0; \)
\(\text{ Opt}[0,0] := 0; \)
for \(i := 1 \) to \(m \)
 for \(j := 1 \) to \(n \)
 if \(A[i] = B[j] \)
 \{ \text{ Opt}[i,j] := 1 + \text{ Opt}[i-1,j-1]; \ \text{ Best}[i,j] := \text{ Diag}; \}
 else if \(\text{ Opt}[i-1,j] \geq \text{ Opt}[i,j-1] \)
 \{ \text{ Opt}[i,j] := \text{ Opt}[i-1,j], \ \text{ Best}[i,j] := \text{ Left}; \}
 else
 \{ \text{ Opt}[i,j] := \text{ Opt}[i,j-1], \ \text{ Best}[i,j] := \text{ Down}; \}
How good is this algorithm?

• Is it feasible to compute the LCS of two strings of length 300,000 on a standard desktop PC? Why or why not.
Observations about the Algorithm

• The computation can be done in $O(m+n)$ space if we only need one column of the Opt values or Best Values

• The algorithm can be run from either end of the strings
Computing LCS in $O(nm)$ time and $O(n+m)$ space

- Divide and conquer algorithm
- Recomputing values used to save space
Divide and Conquer Algorithm

- Where does the best path cross the middle column?

- For a fixed i, and for each j, compute the LCS that has a_i matched with b_j
Constrained LCS

• \(\text{LCS}_{i,j}(A,B) \): The LCS such that
 – \(a_1, \ldots, a_i \) paired with elements of \(b_1, \ldots, b_j \)
 – \(a_{i+1}, \ldots a_m \) paired with elements of \(b_{j+1}, \ldots, b_n \)

• \(\text{LCS}_{4,3}(abbacbb, cbbaa) \)
A = RRSSRTTRTS
B = RTSRRSTST

Compute \(\text{LCS}_{5,0}(A,B), \text{LCS}_{5,1}(A,B), \ldots, \text{LCS}_{5,9}(A,B)\)
$$A = \text{RRSSRTTTRS}$$
$$B = \text{RTSRRRSTST}$$

Compute $\text{LCS}_{5,0}(A,B)$, $\text{LCS}_{5,1}(A,B)$, \ldots, $\text{LCS}_{5,9}(A,B)$

<table>
<thead>
<tr>
<th>j</th>
<th>left</th>
<th>right</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
Computing the middle column

- From the left, compute \(\text{LCS}(a_1 \ldots a_{m/2}, b_1 \ldots b_j) \)
- From the right, compute \(\text{LCS}(a_{m/2+1} \ldots a_m, b_{j+1} \ldots b_n) \)
- Add values for corresponding j’s

- Note – this is space efficient
Divide and Conquer

- $A = a_1,\ldots,a_m$ \quad $B = b_1,\ldots,b_n$
- Find j such that
 - $LCS(a_1\ldots a_{m/2}, b_1\ldots b_j)$ and
 - $LCS(a_{m/2+1}\ldots a_m, b_{j+1}\ldots b_n)$ yield optimal solution
- Recurse
Algorithm Analysis

- $T(m,n) = T(m/2, j) + T(m/2, n-j) + cnm$
Prove by induction that
\[T(m,n) \leq 2cmn \]
Memory Efficient LCS Summary

• We can afford $O(nm)$ time, but we can’t afford $O(nm)$ space

• If we only want to compute the length of the LCS, we can easily reduce space to $O(n+m)$

• Avoid storing the value by recomputing values
 – Divide and conquer used to reduce problem sizes