Announcements

- Homework Deadlines
 - HW 6: Friday, November 13
 - HW 7: Wednesday, November 18
 - HW 8: Wednesday, November 25
 - HW 9: Friday, December 4
 - HW 10: Friday, December 11

Optimal linear interpolation

\[\text{Error} = \sum (y_i - ax_i - b)^2 \]

Notation

- Points \(p_1, p_2, \ldots, p_n \) ordered by \(x \)-coordinate \((p_i = (x_i, y_i)) \)
- \(E_{ij} \) is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)

Optimal interpolation with \(k \) segments

- Optimal segmentation with three segments
 - \(\text{Min}_{ij} (E_{1j} + E_{ij} + E_{jn}) \)
 - \(O(n^2) \) combinations considered
- Generalization to \(k \) segments leads to considering \(O(n^{k-1}) \) combinations

\[\text{Opt}_{k}[j] : \text{Minimum error approximating } p_1 \ldots p_j \text{ with } k \text{ segments} \]

Express \(\text{Opt}_{k}[j] \) in terms of \(\text{Opt}_{k-1}[i], \ldots, \text{Opt}_{k-1}[j] \)

\[\text{Opt}_{k}[j] = \min_{i} \{ \text{Opt}_{k-1}[i] + E_{ij} \} \text{ for } 0 < i < j \]
Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem.

Optimal multi-segment interpolation

Compute \(\text{Opt}[k, j] \) for \(0 < k < j < n \)

for \(j := 1 \) to \(n \)

\(\text{Opt}[1, j] = E_{1,j} \);

for \(k := 2 \) to \(n-1 \)

for \(j := 2 \) to \(n \)

\(t := E_{1,j} \);

for \(i := 1 \) to \(j - 1 \)

\(t = \min(t, \text{Opt}[k-1, i] + E_{i,j}) \);

\(\text{Opt}[k, j] = t \)

Determining the solution

• When \(\text{Opt}[k, j] \) is computed, record the value of i that minimized the sum
• Store this value in a auxiliary array
• Use to reconstruct solution

Variable number of segments

• Segments not specified in advance
• Penalty function associated with segments
• Cost = Interpolation error + C x #Segments

Penalty cost measure

• \(\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P)) \)

Subset Sum Problem

• Let \(w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\} \)
• Find a subset that has as large a sum as possible, without exceeding 50
Adding a variable for Weight

- $\text{Opt}[j, K]$ the largest subset of \{w_1, ..., w_j\} that sums to at most K
- \{2, 4, 7, 10\}
 - $\text{Opt}[2, 7]$
 - $\text{Opt}[3, 7]$
 - $\text{Opt}[3, 12]$
 - $\text{Opt}[4, 12]$

Subset Sum Recurrence

- $\text{Opt}[j, K]$ the largest subset of \{w_1, ..., w_j\} that sums to at most K

Subset Sum Grid

$\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j)$

\begin{tabular}{cccccccccccc}
4 & & & & & & & & & & & \\
3 & & & & & & & & & & & \\
2 & & & & & & & & & & & \\
1 & & & & & & & & & & & \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{tabular}

\{2, 4, 7, 10\}

Subset Sum Code

\begin{align*}
\text{for } j = 1 \text{ to } n \\
\text{for } k = 1 \text{ to } W \\
\text{Opt}[j, k] = \max(\text{Opt}[j - 1, k], \text{Opt}[j - 1, k - w_j] + w_j)
\end{align*}

Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weight
- Items \{I_1, I_2, ..., I_n\}
 - Weights \{w_1, w_2, ..., w_n\}
 - Values \{v_1, v_2, ..., v_n\}
 - Bound K
- Find set S of indices to:
 - Maximize $\sum_{i \in S} v_i$ such that $\sum_{i \in S} w_i \leq K$

Knapsack Recurrence

Subset Sum Recurrence:

$\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j)$

Knapsack Recurrence:
Knapsack Grid

\[
\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + v_j)
\]

Weights \(\{2, 4, 7, 10\}\) Values: \(\{3, 5, 9, 16\}\)

Dynamic Programming Examples

- **Examples**
 - Optimal Billboard Placement
 - Text, Solved Exercise, Pg 307
 - Linebreaking with hyphenation
 - Compare with HW problem 6, Pg 317
 - String approximation
 - Text, Solved Exercise, Page 309

Billboard Placement

- Maximize income in placing billboards
 - \(b_i = (p_i, v_i)\), \(v_i\): value of placing billboard at position \(p_i\)
- Constraint:
 - At most one billboard every five miles
- Example
 - \(\{(6,5), (8,6), (12, 5), (14, 1)\}\)

Design a Dynamic Programming Algorithm for Billboard Placement

- Compute \(\text{Opt}[1], \text{Opt}[2], \ldots, \text{Opt}[n]\)
- What is \(\text{Opt}[k]\)?

Opt[k] = fun(Opt[0],...,Opt[k-1])

- How is the solution determined from subproblems?

Solution

```plaintext
j = 0; // j is five miles behind the current position
// the last valid location for a billboard, if one placed at P[k]
for k := 1 to n
  while (P[j] < P[k] - 5)
    j := j + 1;
  j := j - 1;
  Opt[k] = Max(Opt[k - 1], V[k] + Opt[j]);
```

Input \(b_1, \ldots, b_n\) where \(b_i = (p_i, v_i)\), position and value of billboard \(i\)
Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.

Penalty Function

- Pen(i, j) – penalty of starting a line at position i, and ending at position j

Optimal line breaking and hyphenation is computed with dynamic programming

- Key technical idea
 - Number the breaks between words/syllables

String approximation

- Given a string S, and a library of strings B = \{b_1, \ldots, b_m\}, construct an approximation of the string S by using copies of strings in B.

 \[B = \{abab, bbbaaa, ccbb, ccaacc\} \]
 \[S = abaccbbbaabbccbbcbcbcaabab \]

Formal Model

- Strings from B assigned to non-overlapping positions of S
- Strings from B may be used multiple times
- Cost of \(\delta \) for unmatched character in S
- Cost of \(\gamma \) for mismatched character in S
 - MisMatch(i, j) – number of mismatched characters of \(b_j \), when aligned starting at position i in S.

Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], …, Opt[n]
- What is Opt[k]?

Opt[k] = fun(Opt[0],…,Opt[k-1])

- How is the solution determined from sub problems?
Solution

for i := 1 to n
 Opt[k] = Opt[k-1] + δ;
for j := 1 to |B|
 p = i - len(b_j);
 Opt[k] = min(Opt[k], Opt[p-1] + γ MisMatch(p, j));