CSE 421
Algorithms
Richard Anderson
Lecture 18
Dynamic Programming
Announcements

• Homework Deadlines
 – HW 6: Friday, November 13
 – HW 7: Wednesday, November 18
 – HW 8: Wednesday, November 25
 – HW 9: Friday, December 4
 – HW 10: Friday, December 11
Optimal linear interpolation

Optimal linear interpolation with K segments

$$\text{Error} = \sum (y_i - ax_i - b)^2$$
Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with k segments

• Optimal segmentation with three segments
 – Min$_{i,j}$\{E$_{1,i}$ + E$_{i,j}$ + E$_{j,n}$\}
 – O(n2) combinations considered

• Generalization to k segments leads to considering O(n$^{k-1}$) combinations
Opt\(_k[j]\) : Minimum error approximating \(p_1 \ldots p_j\) with \(k\) segments

Express \(\text{Opt}_k[j]\) in terms of \(\text{Opt}_{k-1}[1], \ldots, \text{Opt}_{k-1}[j]\)

\[
\text{Opt}_k[j] = \min_i \{ \text{Opt}_{k-1}[i] + E_{i, j} \} \text{ for } 0 < i < j
\]
Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem
Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j := 1 to n
 Opt[1, j] = E_{1,j} ;
for k := 2 to n-1
 for j := 2 to n
 t := E_{1,j}
 for i := 1 to j -1
 t = min (t, Opt[k-1, i] + E_{i,j})
 Opt[k, j] = t
Determining the solution

- When Opt\([k,j]\) is computed, record the value of \(i\) that minimized the sum
- Store this value in an auxiliary array
- Use to reconstruct solution
Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C \times \#Segments
Penalty cost measure

- \(\text{Opt}[j] = \min(E_{1,j}, \min_i (\text{Opt}[i] + E_{i,j} + P)) \)
Subset Sum Problem

- Let $w_1, \ldots, w_n = \{6, 8, 9, 11, 13, 16, 18, 24\}$
- Find a subset that has as large a sum as possible, without exceeding 50
Adding a variable for Weight

• Opt[j, K] the largest subset of \{w_1, \ldots, w_j\} that sums to at most K

• \{2, 4, 7, 10\}
 – Opt[2, 7] =
 – Opt[3, 7] =
 – Opt[3,12] =
 – Opt[4,12] =
Subset Sum Recurrence

- \(\text{Opt}[j, K] \) the largest subset of \(\{w_1, \ldots, w_j\} \) that sums to at most \(K \)
Subset Sum Grid

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – w_j] + w_j)

{2, 4, 7, 10}
Subset Sum Code

\[
\text{for } j = 1 \text{ to } n \\
\text{~~~~for } k = 1 \text{ to } W \\
\text{~~~~~~Opt}[j, k] = \max(\text{Opt}[j-1, k], \text{Opt}[j-1, k-w_j] + w_j)
\]
Knapsack Problem

- Items have weights and values
- The problem is to maximize total value subject to a bound on weight
- Items \{I_1, I_2, \ldots, I_n\}
 - Weights \{w_1, w_2, \ldots, w_n\}
 - Values \{v_1, v_2, \ldots, v_n\}
 - Bound K
- Find set S of indices to:
 - Maximize \(\sum_{i \in S} v_i\) such that \(\sum_{i \in S} w_i \leq K\)
Knapsack Recurrence

Subset Sum Recurrence:

$$\text{Opt}[j, K] = \max(\text{Opt}[j - 1, K], \text{Opt}[j - 1, K - w_j] + w_j)$$

Knapsack Recurrence:
Knapsack Grid

Opt[j, K] = max(Opt[j – 1, K], Opt[j – 1, K – w_j] + v_j)

Weights {2, 4, 7, 10} Values: {3, 5, 9, 16}
Dynamic Programming
Examples

• Examples
 – Optimal Billboard Placement
 • Text, Solved Exercise, Pg 307
 – Linebreaking with hyphenation
 • Compare with HW problem 6, Pg 317
 – String approximation
 • Text, Solved Exercise, Page 309
Billboard Placement

• Maximize income in placing billboards
 – $b_i = (p_i, v_i)$, v_i: value of placing billboard at position p_i

• Constraint:
 – At most one billboard every five miles

• Example
 – $\{(6,5), (8,6), (12, 5), (14, 1)\}$
Design a Dynamic Programming Algorithm for Billboard Placement

• Compute Opt[1], Opt[2], \ldots, Opt[n]
• What is Opt[k]?

Input \(b_1, \ldots, b_n\), where \(b_i = (p_i, v_i)\), position and value of billboard \(i\)
Opt[k] = fun(Opt[0],...,Opt[k-1])

- How is the solution determined from subproblems?

Input b_1, \ldots, b_n, where $b_i = (p_i, v_i)$, position and value of billboard i
j = 0; // j is five miles behind the current position
// the last valid location for a billboard, if one placed at P[k]
for k := 1 to n
 while (P[j] < P[k] - 5)
 j := j + 1;
 j := j - 1;
 Opt[k] = Max(Opt[k-1], V[k] + Opt[j]);
Optimal line breaking and hyphenation

- Problem: break lines and insert hyphens to make lines as balanced as possible
- Typographical considerations:
 - Avoid excessive white space
 - Limit number of hyphens
 - Avoid widows and orphans
 - Etc.
Penalty Function

- Pen(i, j) – penalty of starting a line a position i, and ending at position j

- Optimal line breaking and hyphenation is computed with dynamic programming

- Key technical idea
 - Number the breaks between words/syllables
String approximation

- Given a string S, and a library of strings $B = \{b_1, \ldots, b_m\}$, construct an approximation of the string S by using copies of strings in B.

$B = \{abab, bbbaaa, ccb, ccaacc\}$

$S = \text{abacccbbbaabbccbbcccaabab}$
Formal Model

- Strings from B assigned to non-overlapping positions of S
- Strings from B may be used multiple times
- Cost of δ for unmatched character in S
- Cost of γ for mismatched character in S
 - $\text{MisMatch}(i, j)$ – number of mismatched characters of b_j, when aligned starting with position i in s.
Design a Dynamic Programming Algorithm for String Approximation

- Compute Opt[1], Opt[2], ... , Opt[n]
- What is Opt[k]?

Target string $S = s_1s_2...s_n$
Library of strings $B = \{b_1,...,b_m\}$
$\text{MisMatch}(i,j) = \text{number of mismatched characters with } b_j \text{ when aligned starting at position } i \text{ of } S.$
$\text{Opt}[k] = \text{fun}(\text{Opt}[0], \ldots, \text{Opt}[k-1])$

- How is the solution determined from subproblems?

Target string $S = s_1s_2 \ldots s_n$
Library of strings $B = \{b_1, \ldots, b_m\}$
$\text{MisMatch}(i, j) =$ number of mismatched characters with b_j when aligned starting at position i of S.
for i := 1 to n
 Opt[k] = Opt[k-1] + \delta;
for j := 1 to |B|
 p = i - len(b_j);
 Opt[k] = min(Opt[k], Opt[p-1] + \gamma \text{MisMatch}(p, j));