Dynamic Programming

- Weighted Interval Scheduling
- Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals

Optimality Condition

- $\text{Opt}[j]$ is the maximum weight independent set of intervals I_1, I_2, \ldots, I_j
- $\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]])$
 - Where $p[j]$ is the index of the last interval which finishes before I_j starts

Algorithm

$$\text{MaxValue}(j) =$$

- if $j = 0$ return 0
- else if $M[j] \neq -1$ return $M[j]$
- else
 - $M[j] = \max(\text{MaxValue}(j-1), w_j + \text{MaxValue}(p[j]))$
 - return $M[j]$

Worst case run time: 2^n

A better algorithm

$M[j]$ initialized to -1 before the first recursive call for all j

$$\text{MaxValue}(j) =$$

- if $j = 0$ return 0;
- else if $M[j] = -1$ return $M[j];$
- else
 - $M[j] = \max(\text{MaxValue}(j-1), w_j + \text{MaxValue}(p[j]));$
 - return $M[j];$

Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

$$\text{MaxValue}($$}
Fill in the array with the Opt values

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

Computing the solution

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

Record which case is used in Opt computation

Dynamic Programming

- The most important algorithmic technique covered in CSE 421
- Key ideas
 - Express solution in terms of a polynomial number of sub problems
 - Order sub problems to avoid recomputation

Optimal linear interpolation

\[
\text{Error} = \sum (y_i - ax_i - b)^2
\]

What is the optimal linear interpolation with three line segments?

What is the optimal linear interpolation with two line segments?
What is the optimal linear interpolation with n line segments

Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- E_{ij} is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with two segments

- Give an equation for the optimal interpolation of p_1, \ldots, p_n with two line segments
- E_{ij} is the least squares error for the optimal line interpolating p_i, \ldots, p_j

Optimal interpolation with k segments

- Optimal segmentation with three segments
 - $\min_{i,j} (E_{1j} + E_{ij} + E_{jn})$
 - $O(n^2)$ combinations considered
- Generalization to k segments leads to considering $O(n^{k-1})$ combinations

$Opt_k[j]$: Minimum error approximating $p_1 \ldots p_j$ with k segments

How do you express $Opt_k[j]$ in terms of $Opt_{k-1}[1], \ldots, Opt_{k-1}[j]$?

Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of k-1 segments on a smaller problem
Optimal multi-segment interpolation

Compute Opt[k, j] for 0 < k < j < n

for j := 1 to n
 Opt[1, j] = E_{1,j};
for k := 2 to n-1
 for j := 2 to n
 t := E_{1,j}
 for i := 1 to j - 1
 t = min (t, Opt[k-1, i] + E_{i,j})
 Opt[k, j] = t

Determining the solution

• When Opt[k,j] is computed, record the value of i that minimized the sum
• Store this value in a auxiliary array
• Use to reconstruct solution

Variable number of segments

• Segments not specified in advance
• Penalty function associated with segments
• Cost = Interpolation error + C x #Segments

Penalty cost measure

• Opt[j] = min(E_{1,j}, min_i (Opt[i] + E_{i,j} + P))