Dynamic Programming

• Weighted Interval Scheduling

• Given a collection of intervals I_1, \ldots, I_n with weights w_1, \ldots, w_n, choose a maximum weight set of non-overlapping intervals
Optimality Condition

- \(\text{Opt}[j] \) is the maximum weight independent set of intervals \(I_1, I_2, \ldots, I_j \)
- \(\text{Opt}[j] = \max(\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \)
 - Where \(p[j] \) is the index of the last interval which finishes before \(I_j \) starts
Algorithm

MaxValue(j) =
 if j = 0 return 0
 else
 return max(MaxValue(j-1),
 w_j + MaxValue(p[j]))

Worst case run time: 2^n
A better algorithm

M[j] initialized to -1 before the first recursive call for all j

MaxValue(j) =
 if j = 0 return 0;
 else if M[j] != -1 return M[j];
 else
 M[j] = max(MaxValue(j-1), w_j + MaxValue(p[j]));
 return M[j];
Iterative Algorithm

Express the MaxValue algorithm as an iterative algorithm

MaxValue {

}
Fill in the array with the Opt values

$$\text{Opt}[j] = \max(\text{Opt}[j - 1], \text{w}_j + \text{Opt}[p[j]])$$
Computing the solution

\[\text{Opt}[j] = \max (\text{Opt}[j-1], w_j + \text{Opt}[p[j]]) \]

Record which case is used in Opt computation
Dynamic Programming

• The most important algorithmic technique covered in CSE 421
• Key ideas
 – Express solution in terms of a polynomial number of sub problems
 – Order sub problems to avoid recomputation
Optimal linear interpolation

\[\text{Error} = \sum (y_i - ax_i - b)^2 \]
What is the optimal linear interpolation with three line segments
What is the optimal linear interpolation with two line segments?
What is the optimal linear interpolation with n line segments
Notation

- Points p_1, p_2, \ldots, p_n ordered by x-coordinate ($p_i = (x_i, y_i)$)
- $E_{i,j}$ is the least squares error for the optimal line interpolating p_i, \ldots, p_j
Optimal interpolation with two segments

• Give an equation for the optimal interpolation of \(p_1, \ldots, p_n \) with two line segments

\[E_{i,j} \] is the least squares error for the optimal line interpolating \(p_i, \ldots, p_j \)
Optimal interpolation with k segments

• Optimal segmentation with three segments
 – \(\min_{i,j} \{ E_{1,i} + E_{i,j} + E_{j,n} \} \)
 – \(O(n^2) \) combinations considered

• Generalization to k segments leads to considering \(O(n^{k-1}) \) combinations
Opt\(_k[j]\) : Minimum error approximating \(p_1 \ldots p_j\) with \(k\) segments

How do you express Opt\(_k[j]\) in terms of Opt\(_{k-1}[1], \ldots, \text{Opt}_{k-1}[j]\)?
Optimal sub-solution property

Optimal solution with k segments extends an optimal solution of $k-1$ segments on a smaller problem.
Optimal multi-segment interpolation

Compute $\text{Opt}[k, j]$ for $0 < k < j < n$

\begin{align*}
&\text{for } j := 1 \text{ to } n \\
&\quad \text{Opt}[1, j] = E_{1,j}; \\
&\text{for } k := 2 \text{ to } n-1 \\
&\quad \text{for } j := 2 \text{ to } n \\
&\quad \quad t := E_{1,j} \\
&\quad \quad \text{for } i := 1 \text{ to } j - 1 \\
&\quad \quad \quad t = \min (t, \text{Opt}[k-1, i] + E_{i,j}) \\
&\quad \text{Opt}[k, j] = t
\end{align*}
Determining the solution

• When Opt[k,j] is computed, record the value of i that minimized the sum
• Store this value in a auxiliary array
• Use to reconstruct solution
Variable number of segments

- Segments not specified in advance
- Penalty function associated with segments
- Cost = Interpolation error + C x #Segments
Penalty cost measure

- $\text{Opt}[j] = \min(E_{1,j}, \min_i(\text{Opt}[i] + E_{i,j} + P))$