CSE 421 Algorithms
Lecture 15
Closest Pair, Multiplication

Divide and Conquer Algorithms
- Mergesort, Quicksort
- Strassen’s Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba’s Algorithm)
- FFT
 - Polynomial Multiplication
 - Convolution

Closest Pair Problem
- Given a set of points find the pair of points p, q that minimizes dist(p, q)

Divide and conquer
- If we solve the problem on two subsets, does it help? (Separate by median x coordinate)

Packing Lemma
Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ?

Combining Solutions
- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?
A packing lemma bounds the number of distances to check

Details

- Preprocessing: sort points by y
- Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - Find highest point on the other side that is at most δ above
 - Find lowest point on the other side that is at most δ below
 - Compare with the points in this interval (there are at most 6)

Identify the pairs of points that are compared in the merge step following the recursive calls

Algorithm run time

- After preprocessing:
 - $T(n) = cn + 2T(n/2)$

Integer Arithmetic

Recursive Algorithm (First attempt)

$x = x_12^{n/2} + x_0$

$y = y_12^{n/2} + y_0$

$xy = (x_12^{n/2} + x_0)(y_12^{n/2} + y_0)$

$= x_1y_12^n + (x_1y_0 + x_0y_1)2^{n/2} + x_0y_0$

Recurrence:

Run time:
Simple algebra

\[x = x_1 \cdot 2^{n/2} + x_0 \]
\[y = y_1 \cdot 2^{n/2} + y_0 \]
\[xy = x_1 y_1 \cdot 2^n + (x_1 y_0 + x_0 y_1) \cdot 2^{n/2} + x_0 y_0 \]
\[p = (x_1 + x_0)(y_1 + y_0) = x_1 y_1 + x_1 y_0 + x_0 y_1 + x_0 y_0 \]

Karatsuba’s Algorithm

Multiply \(n \)-digit integers \(x \) and \(y \)

Let \(x = x_1 \cdot 2^{n/2} + x_0 \) and \(y = y_1 \cdot 2^{n/2} + y_0 \)

Recursively compute
\[a = x_1 y_1 \]
\[b = x_0 y_0 \]
\[p = (x_1 + x_0)(y_1 + y_0) \]

Return \(a \cdot 2^n + (p - a - b) \cdot 2^{n/2} + b \)

Recurrence: \(T(n) = 3T(n/2) + cn \)

FFT, Convolution and Polynomial Multiplication

- Preview
 - FFT - \(O(n \log n) \) algorithm
 - Evaluate a polynomial of degree \(n \) at \(n \) points in \(O(n \log n) \) time
 - Computation of Convolution and Polynomial Multiplication (in \(O(n \log n) \)) time