CSE 421
Algorithms

Lecture 15
Closest Pair, Multiplication
Divide and Conquer Algorithms

- Mergesort, Quicksort
- Strassen’s Algorithm
- Inversion counting
- Median
- Closest Pair Algorithm (2d)
- Integer Multiplication (Karatsuba’s Algorithm)
- FFT
 - Polynomial Multiplication
 - Convolution
Closest Pair Problem

• Given a set of points find the pair of points p, q that minimizes $\text{dist}(p, q)$
Divide and conquer

• If we solve the problem on two subsets, does it help? (Separate by median x coordinate)
Packing Lemma

Suppose that the minimum distance between points is at least δ, what is the maximum number of points that can be packed in a ball of radius δ?
Combining Solutions

- Suppose the minimum separation from the sub problems is δ
- In looking for cross set closest pairs, we only need to consider points with δ of the boundary
- How many cross border interactions do we need to test?
A packing lemma bounds the number of distances to check.
Details

- Preprocessing: sort points by y
- Merge step
 - Select points in boundary zone
 - For each point in the boundary
 - Find highest point on the other side that is at most δ above
 - Find lowest point on the other side that is at most δ below
 - Compare with the points in this interval (there are at most 6)
Identify the pairs of points that are compared in the merge step following the recursive calls.
Algorithm run time

- After preprocessing:
 - $T(n) = cn + 2 \ T(n/2)$
Integer Arithmetic

\[
\begin{array}{c}
9715480283945084383094856701043643845790217965702956767 \\
+ 1242431098234099057329075097179898430928779579277597977 \\
\hline
2095067093034680994318596846868779409766717133476767930 \\
\times 5920175091777634709677679342929097012308956679993010921
\end{array}
\]

Runtime for standard algorithm to add two n digit numbers:

2095067093034680994318596846868779409766717133476767930

Runtime for standard algorithm to multiply two n digit numbers:
Recursive Algorithm (First attempt)

\[x = x_1 2^{n/2} + x_0 \]
\[y = y_1 2^{n/2} + y_0 \]
\[xy = (x_1 2^{n/2} + x_0) (y_1 2^{n/2} + y_0) \]
\[= x_1 y_1 \ 2^n + (x_1 y_0 + x_0 y_1)2^{n/2} + x_0 y_0 \]

Recurrence:

Run time:
Simple algebra

\[x = x_1 2^{n/2} + x_0 \]
\[y = y_1 2^{n/2} + y_0 \]
\[xy = x_1 y_1 2^n + (x_1 y_0 + x_0 y_1) 2^{n/2} + x_0 y_0 \]

\[p = (x_1 + x_0)(y_1 + y_0) = x_1 y_1 + x_1 y_0 + x_0 y_1 + x_0 y_0 \]
Karatsuba’s Algorithm

Multiply n-digit integers x and y

Let $x = x_1 \cdot 2^{n/2} + x_0$ and $y = y_1 \cdot 2^{n/2} + y_0$

Recursively compute

- $a = x_1 y_1$
- $b = x_0 y_0$
- $p = (x_1 + x_0)(y_1 + y_0)$

Return $a2^n + (p - a - b)2^{n/2} + b$

Recurrence: $T(n) = 3T(n/2) + cn$
FFT, Convolution and Polynomial Multiplication

• Preview
 – FFT - $O(n \log n)$ algorithm
 • Evaluate a polynomial of degree n at n points in $O(n \log n)$ time
 – Computation of Convolution and Polynomial Multiplication (in $O(n \log n)$) time