CSE 421
Algorithms
Richard Anderson
Lecture 12
Recurrences

Announcements

- Midterm
 - Monday, Nov 2, in class, closed book
 - Through section 5.2

Divide and Conquer

- Recurrences, Sections 5.1 and 5.2
- Algorithms
 - Counting Inversions (5.3)
 - Closest Pair (5.4)
 - Multiplication (5.5)
 - FFT (5.6)

Array Mergesort(Array a) {
 n = a.Length;
 if (n <= 1)
 return a;
 b = Mergesort(a[0 .. n/2]);
 c = Mergesort(a[n/2+1 .. n-1]);
 return Merge(b, c);
}

Algorithm Analysis

- Cost of Merge
- Cost of Mergesort

T(n) <= 2T(n/2) + cn; T(1) <= c;
Recurrence Analysis

- Solution methods
 - Unrolling recurrence
 - Guess and verify
 - Plugging in to a "Master Theorem"

Unrolling the recurrence

Substitution

Prove \(T(n) \leq cn (\log_2 n + 1) \) for \(n \geq 1 \)

Induction:
Base Case:

Induction Hypothesis:

A better mergesort (?)

- Divide into 3 subarrays and recursively sort
- Apply 3-way merge

What is the recurrence?

Unroll recurrence for \(T(n) = 3T(n/3) + dn \)

\[T(n) = aT(n/b) + f(n) \]
Where does this recurrence arise?

Solving the recurrence exactly

\[T(n) = 4T(n/2) + cn \]

\[T(n) = 2T(n/2) + n \]

\[T(n) = 2T(n/2) + n^{1/2} \]

Recurrences

• Three basic behaviors
 – Dominated by initial case
 – Dominated by base case
 – All cases equal – we care about the depth