Greedy Algorithms for Minimum Spanning Tree

- [Prim] Extend a tree by including the cheapest outgoing edge
- [Kruskal] Add the cheapest edge that joins disjoint components
- [ReverseDelete] Delete the most expensive edge that does not disconnect the graph

Why do the greedy algorithms work?

- For simplicity, assume all edge costs are distinct

Edge inclusion lemma

- Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V-S$
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree

Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in $V-S$

- $T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree
Optimality Proofs

- Prim’s Algorithm computes a MST
- Kruskal’s Algorithm computes a MST

Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and $V-S$ for some set S.

Prim’s Algorithm

$S = \{ \} ; \quad T = \{ \} ;$
while $S \neq V$
 choose the minimum cost edge $e = (u,v)$, with $u \in S$, and $v \in V-S$
 add e to T
 add v to S

Prove Prim’s algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Kruskal’s Algorithm

Let $C = \{ \{v_1\}, \{v_2\}, \ldots, \{v_n\} \} ; \quad T = \{ \} $
while $|C| > 1$
 Let $e = (u, v)$ with $u \in C_i$ and $v \in C_j$ be the minimum cost edge joining distinct sets in C
 Replace C_i and C_j by $C_i \cup C_j$
 Add e to T

Prove Kruskal’s algorithm computes an MST

- Show an edge e is in the MST when it is added to T

Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree
Dealing with the assumption of no equal weight edges
• Force the edge weights to be distinct
 – Add small quantities to the weights
 – Give a tie breaking rule for equal weight edges

Application: Clustering
• Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together

Distance clustering
• Divide the data set into K subsets to maximize the distance between any pair of sets
 – \(\text{dist} (S_1, S_2) = \min \{\text{dist}(x, y) | x \in S_1, y \in S_2\} \)

Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\},\{v_2\}, \ldots, \{v_n\}\}; \ T = \{\}$
while $|C| > K$
 Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C
 Replace C_i and C_j by $C_i \cup C_j$

K-clustering

Shortest paths in undirected graphs vs directed graphs

What about the minimum spanning tree of a directed graph?
- Must specify the root r
- Branching: Out tree with root r

Finding a minimum branching

- Remove all edges going into r
- Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching
Finding a minimum branching

• Consider the graph that consists of the minimum cost edge coming in to each vertex
 – If this graph is a branching, then it is the minimum cost branching
 – Otherwise, the graph contains one or more cycles
 • Collapse the cycles in the original graph to super vertices
 • Reweight the graph and repeat the process