Minimum Spanning Tree

Undirected Graph $G=(V,E)$ with edge weights
Greedy Algorithms for Minimum Spanning Tree

- **[Prim]** Extend a tree by including the cheapest outgoing edge
- **[Kruskal]** Add the cheapest edge that joins disjoint components
- **[ReverseDelete]** Delete the most expensive edge that does not disconnect the graph
Why do the greedy algorithms work?

• For simplicity, assume all edge costs are distinct
Edge inclusion lemma

- Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

- Suppose T is a spanning tree that does not contain e.
- Add e to T, this creates a cycle.
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in V-S.

$T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost.
Hence, T is not a minimum spanning tree.
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and $V \setminus S$ for some set S.
Prim’s Algorithm

\[S = \{ \} ; \quad T = \{ \} ; \]

while \(S \neq V \)

choose the minimum cost edge \(e = (u,v) \), with \(u \) in \(S \), and \(v \) in \(V-S \)

add \(e \) to \(T \)

add \(v \) to \(S \)
Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T
Prove Kruskal’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Reverse-Delete Algorithm

• Lemma: The most expensive edge on a cycle is never in a minimum spanning tree
Dealing with the assumption of no equal weight edges

• Force the edge weights to be distinct
 – Add small quantities to the weights
 – Give a tie breaking rule for equal weight edges
Application: Clustering

• Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets
 \[\text{dist} (S_1, S_2) = \min \{ \text{dist}(x, y) \mid x \text{ in } S_1, y \text{ in } S_2 \} \]
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{v_1, v_2, \ldots, v_n\}$; $T = \{\}$

while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering
Shortest paths in undirected graphs vs directed graphs
What about the minimum spanning tree of a directed graph?

- Must specify the root r
- Branching: Out tree with root r
Finding a minimum branching
Finding a minimum branching

• Remove all edges going into r
• Normalize the edge weights, so the minimum weight edge coming into each vertex has weight zero

This does not change the edges of the minimum branching
Finding a minimum branching

• Consider the graph that consists of the minimum cost edge coming in to each vertex
 – If this graph is a branching, then it is the minimum cost branching
 – Otherwise, the graph contains one or more cycles
 • Collapse the cycles in the original graph to super vertices
 • Reweight the graph and repeat the process
Finding a minimum branching