CSE 421
Algorithms
Autumn 2015
Lecture 10
Minimum Spanning Trees
Dijkstra’s Algorithm
Implementation and Runtime

\[S = \{\}; \quad d[s] = 0; \quad d[v] = \text{infinity for } v \neq s \]

While \(S \neq V \)

Choose \(v \) in \(V-S \) with minimum \(d[v] \)

Add \(v \) to \(S \)

For each \(w \) in the neighborhood of \(v \)

\[d[w] = \min(d[w], d[v] + c(v, w)) \]

Edge costs are assumed to be non-negative
Shortest Paths

- Negative Cost Edges
 - Dijkstra’s algorithm assumes positive cost edges
 - For some applications, negative cost edges make sense
 - Shortest path not well defined if a graph has a negative cost cycle
Negative Cost Edge Preview

- Topological Sort can be used for solving the shortest path problem in directed acyclic graphs.
- Bellman-Ford algorithm finds shortest paths in a graph with negative cost edges (or reports the existence of a negative cost cycle).
Bottleneck Shortest Path

• Define the bottleneck distance for a path to be the maximum cost edge along the path
Compute the bottleneck shortest paths
Dijkstra’s Algorithm for Bottleneck Shortest Paths

S = {}; \quad d[s] = \text{negative infinity}; \quad d[v] = \text{infinity for } v \neq s

While S \neq V

Choose v in V-S with minimum d[v]

Add v to S

For each w in the neighborhood of v

\[d[w] = \min(d[w], \max(d[v], c(v, w))) \]
Minimum Spanning Tree

• Introduce Problem
• Demonstrate three different greedy algorithms
• Provide proofs that the algorithms work
Minimum Spanning Tree
Greedy Algorithms for Minimum Spanning Tree

• Extend a tree by including the cheapest out going edge
• Add the cheapest edge that joins disjoint components
• Delete the most expensive edge that does not disconnect the graph
Greedy Algorithm 1
Prim’s Algorithm

- Extend a tree by including the cheapest outgoing edge

Construct the MST with Prim’s algorithm starting from vertex a
Label the edges in order of insertion
Greedy Algorithm 2
Kruskal’s Algorithm

- Add the cheapest edge that joins disjoint components

Construct the MST with Kruskal’s algorithm
Label the edges in order of insertion
Greedy Algorithm 3
Reverse-Delete Algorithm

- Delete the most expensive edge that does not disconnect the graph

Construct the MST with the reverse-delete algorithm
Label the edges in order of removal
Dijkstra’s Algorithm for Minimum Spanning Trees

S = {}; d[s] = 0; d[v] = infinity for v != s

While S != V

Choose v in V-S with minimum d[v]
Add v to S

For each w in the neighborhood of v

\[d[w] = \min(d[w], c(v, w)) \]
Minimum Spanning Tree

Undirected Graph $G=(V,E)$ with edge weights
Greedy Algorithms for Minimum Spanning Tree

- **[Prim]** Extend a tree by including the cheapest outgoing edge
- **[Kruskal]** Add the cheapest edge that joins disjoint components
- **[ReverseDelete]** Delete the most expensive edge that does not disconnect the graph
Why do the greedy algorithms work?

• For simplicity, assume all edge costs are distinct
Edge inclusion lemma

- Let S be a subset of V, and suppose $e = (u, v)$ is the minimum cost edge of E, with u in S and v in $V - S$
- e is in every minimum spanning tree of G
 - Or equivalently, if e is not in T, then T is not a minimum spanning tree
Proof

- Suppose T is a spanning tree that does not contain e
- Add e to T, this creates a cycle
- The cycle must have some edge $e_1 = (u_1, v_1)$ with u_1 in S and v_1 in $V-S$

$T_1 = T - \{e_1\} + \{e\}$ is a spanning tree with lower cost
- Hence, T is not a minimum spanning tree
Optimality Proofs

• Prim’s Algorithm computes a MST
• Kruskal’s Algorithm computes a MST

• Show that when an edge is added to the MST by Prim or Kruskal, the edge is the minimum cost edge between S and V-S for some set S.
Prim’s Algorithm

S = { }; T = { };
while S != V
 choose the minimum cost edge
 e = (u,v), with u in S, and v in V-S
 add e to T
 add v to S
Prove Prim’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Kruskal’s Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}$; $T = \{\}$

while $|C| > 1$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$

Add e to T
Prove Kruskal’s algorithm computes an MST

• Show an edge e is in the MST when it is added to T
Reverse-Delete Algorithm

- Lemma: The most expensive edge on a cycle is never in a minimum spanning tree
Dealing with the assumption of no equal weight edges

• Force the edge weights to be distinct
 – Add small quantities to the weights
 – Give a tie breaking rule for equal weight edges
Application: Clustering

• Given a collection of points in an r-dimensional space, and an integer K, divide the points into K sets that are closest together
Distance clustering

• Divide the data set into K subsets to maximize the distance between any pair of sets

 $\text{dist} (S_1, S_2) = \min \{\text{dist}(x, y) \mid x \in S_1, y \in S_2\}$
Divide into 2 clusters
Divide into 3 clusters
Divide into 4 clusters
Distance Clustering Algorithm

Let $C = \{\{v_1\}, \{v_2\}, \ldots, \{v_n\}\}; \ T = \{ \}$

while $|C| > K$

Let $e = (u, v)$ with u in C_i and v in C_j be the minimum cost edge joining distinct sets in C

Replace C_i and C_j by $C_i \cup C_j$
K-clustering