CSE 421
Algorithms

Autumn 2015
Lecture 9
Dijkstra's algorithm

Last Week – Greedy Algorithms

- Task scheduling to minimize maximum lateness
 - Interchange lemma

- Farthest in the future algorithm for optimal caching
 - Discard element whose first occurrence is last in the sequence

Announcement

- Collaboration Policy
 - Discussing problems with other students is okay
 - Write ups must be done independently
 - Acknowledge people you work with

This week

- Topics
 - Dijkstra’s Algorithm (Section 4.4)
 - Wednesday: Shortest Paths / Minimum Spanning Trees
 - Friday: Minimum Spanning Trees
- Reading
 - 4.4, 4.5, 4.7, 4.8

Single Source Shortest Path Problem

- Given a graph and a start vertex s
 - Determine distance of every vertex from s
 - Identify shortest paths to each vertex
 - Express concisely as a “shortest paths tree”
 - Each vertex has a pointer to a predecessor on shortest path

Construct Shortest Path Tree from s

A, B, C, A, D, C, B, C, A, D
Warmup

- If \(P \) is a shortest path from \(s \) to \(v \), and if \(t \) is on the path \(P \), the segment from \(s \) to \(t \) is a shortest path between \(s \) and \(t \)

WHY?

Dijkstra's Algorithm

\[
S = \emptyset; \quad d[s] = 0; \quad d[v] = \infty \text{ for } v \neq s
\]

While \(S \neq V \)

Choose \(v \) in \(V \setminus S \) with minimum \(d[v] \)

Add \(v \) to \(S \)

For each \(w \) in the neighborhood of \(v \)

\[
d[w] = \min(d[w], d[v] + c(v, w))
\]

Simulate Dijkstra's algorithm (starting from \(s \)) on the graph

Assume all edges have non-negative cost

Who was Dijkstra?

- What were his major contributions?

http://www.cs.utexas.edu/users/EWD/

- Edsger Wybe Dijkstra was one of the most influential members of computing science's founding generation. Among the domains in which his scientific contributions are fundamental are
 - algorithm design
 - programming languages
 - program design
 - operating systems
 - distributed processing
 - formal specification and verification
 - design of mathematical arguments

Dijkstra's Algorithm as a greedy algorithm

- Elements committed to the solution by order of minimum distance
Correctness Proof
• Elements in S have the correct label
• Key to proof: when v is added to S, it has the correct distance label.

Proof
• Let v be a vertex in $V-S$ with minimum $d[v]
• Let P_v be a path of length $d[v]$, with an edge $(u,v)
• Let P be some other path to v. Suppose P first leaves S on the edge (x, y)
 \[P = P_{x,v} + c(x,y) + P_{y,v} \]
 \[\text{Len}(P_{x,v}) + c(x,y) \geq d[y] \]
 \[\text{Len}(P_{y,v}) \geq 0 \]
 \[\text{Len}(P) \geq d[y] + 0 \geq d[v] \]

Negative Cost Edges
• Draw a small example a negative cost edge and show that Dijkstra’s algorithm fails on this example

Bottleneck Shortest Path
• Define the bottleneck distance for a path to be the maximum cost edge along the path

Compute the bottleneck shortest paths

How do you adapt Dijkstra’s algorithm to handle bottleneck distances
• Does the correctness proof still apply?