Announcements

• Reading
 – For today, sections 4.1, 4.2, 4.4
 – For next week, sections 4.5, 4.7, 4.8

• Homework 3 is available
Greedy Algorithms

• Solve problems with the simplest possible algorithm
• The hard part: showing that something simple actually works
• Today’s problems (Sections 4.2, 4.3)
 – Homework Scheduling
 – Optimal Caching
 – Subsequence testing
Highlights from Last Lecture

• Interval scheduling
 – Earliest Deadline First
 – Correctness proof: Stay ahead lemma

• Multiprocessor schedule
 – Available processor algorithm
 – Can always schedule with d processors, where d is the maximum number of intervals active at any time.
Homework Scheduling

- Tasks to perform
- Deadlines on the tasks
- Freedom to schedule tasks in any order

- Can I get all my work turned in on time?
- If I can’t get everything in, I want to minimize the maximum lateness
Scheduling tasks

- Each task has a length t_i and a deadline d_i
- All tasks are available at the start
- One task may be worked on at a time
- All tasks must be completed

- Goal minimize maximum lateness
 - Lateness = $f_i - d_i$ if $f_i \geq d_i$
Example

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Lateness 1

Lateness 3
Determine the minimum lateness

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
Greedy Algorithm

- Earliest deadline first
- Order jobs by deadline
- This algorithm is optimal
Analysis

• Suppose the jobs are ordered by deadlines,
 \(d_1 \leq d_2 \leq \ldots \leq d_n \)

• A schedule has an \textit{inversion} if job \(j \) is scheduled before \(i \) where \(j > i \)

• The schedule \(A \) computed by the greedy algorithm has no inversions.

• Let \(O \) be the optimal schedule, we want to show that \(A \) has the same maximum lateness as \(O \)
List the inversions

<table>
<thead>
<tr>
<th>Time</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>a₁</td>
<td>3</td>
</tr>
<tr>
<td>a₂</td>
<td>4</td>
</tr>
<tr>
<td>a₃</td>
<td>2</td>
</tr>
<tr>
<td>a₄</td>
<td>5</td>
</tr>
</tbody>
</table>
Lemma: There is an optimal schedule with no idle time

- It doesn’t hurt to start your homework early!

- Note on proof techniques
 - This type of can be important for keeping proofs clean
 - It allows us to make a simplifying assumption for the remainder of the proof
Lemma

• If there is an inversion i, j, there is a pair of adjacent jobs i’, j’ which form an inversion
Interchange argument

• Suppose there is a pair of jobs i and j, with $d_i \leq d_j$, and j scheduled immediately before i. Interchanging i and j does not increase the maximum lateness.
Proof by Bubble Sort

Determine maximum lateness
Real Proof

- There is an optimal schedule with no inversions and no idle time.
- Let O be an optimal schedule with k inversions, we construct a new optimal schedule with $k-1$ inversions.
- Repeat until we have an optimal schedule with 0 inversions.
- This is the solution found by the earliest deadline first algorithm.
Result

• Earliest Deadline First algorithm constructs a schedule that minimizes the maximum lateness
Homework Scheduling

• How is the model unrealistic?
Extensions

• What if the objective is to minimize the sum of the lateness?
 – EDF does not work

• If the tasks have release times and deadlines, and are non-preemptable, the problem is NP-complete

• What about the case with release times and deadlines where tasks are preemptable?
Optimal Caching

• Caching problem:
 – Maintain collection of items in local memory
 – Minimize number of items fetched
Caching example

A, B, C, D, A, E, B, A, D, A, C, B, D, A
Optimal Caching

• If you know the sequence of requests, what is the optimal replacement pattern?

• Note – it is rare to know what the requests are in advance – but we still might want to do this:
 – Some specific applications, the sequence is known
 • Register allocation in code generation
 – Competitive analysis, compare performance on an online algorithm with an optimal offline algorithm
Farthest in the future algorithm

• Discard element used farthest in the future

\[A, B, C, A, C, D, C, B, C, A, D \]
Correctness Proof

• Sketch
• Start with Optimal Solution O
• Convert to Farthest in the Future Solution $F-F$
• Look at the first place where they differ
• Convert O to evict $F-F$ element
 – There are some technicalities here to ensure the caches have the same configuration . . .
Subsequence Testing

• Is $a_1 a_2 \ldots a_m$ a subsequence of $b_1 b_2 \ldots b_n$?
 – e.g. S,A,G,E is a subsequence of S,T,U,A,R,T,R,E,G,E,S
Greedy Algorithm for Subsequence Testing
Next week