Announcements

- Reading
 - Chapter 3 (Mostly review)
 - Start on Chapter 4
- Richard Anderson – No office hour today

Graph Theory

- $G = (V, E)$
 - V – vertices
 - E – edges
- Undirected graphs
 - Edges sets of two vertices (u, v)
- Directed graphs
 - Edges ordered pairs (u, v)
- Many other flavors
 - Edge / vertices weights
 - Parallel edges
 - Self loops

Definitions

- Path: $v_1, v_2, ..., v_k$, with $(v_i, v_{i+1}) \in E$
 - Simple Path
 - Cycle
 - Simple Cycle
- Neighborhood
 - $N(v)$
- Distance
- Connectivity
 - Undirected
 - Directed (strong connectivity)
- Trees
 - Rooted
 - Unrooted

Graph search

- Find a path from s to t

```plaintext
S = {s}
while S is not empty
  u = Select(S)
  visit u
  foreach v in N(u)
    if v is unvisited
      Add(S, v)
      Pred[v] = u
      if (v = t) then path found
```

Breadth first search

- Explore vertices in layers
 - s in layer 1
 - Neighbors of s in layer 2
 - Neighbors of layer 2 in layer 3 . . .
Key observation

- All edges go between vertices on the same layer or adjacent layers

Bipartite Graphs

- A graph \(V \) is bipartite if \(V \) can be partitioned into \(V_1, V_2 \) such that all edges go between \(V_1 \) and \(V_2 \)
- A graph is bipartite if it can be two colored

Can this graph be two colored?

Algorithm

- Run BFS
- Color odd layers red, even layers blue
- If no edges between the same layer, the graph is bipartite
- If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite

Theorem: A graph is bipartite if and only if it has no odd cycles

Lemma 1

- If a graph contains an odd cycle, it is not bipartite
Lemma 2

• If a BFS tree has an *intra-level edge*, then the graph has an odd length cycle

Intra-level edge: both end points are in the same level

Lemma 3

• If a graph has no odd length cycles, then it is bipartite

Graph Search

• Data structure for next vertex to visit determines search order

Graph search

Breadth First Search

\[
S = \{s\}
\]

while S is not empty

\[
u = \text{Dequeue}(S)
\]

if u is unvisited

\[
\text{visit } u
\]

foreach \(v \in N(u)\)

\[
\text{Enqueue}(S, v)
\]

Depth First Search

\[
S = \{s\}
\]

while S is not empty

\[
u = \text{Pop}(S)
\]

if u is unvisited

\[
\text{visit } u
\]

foreach \(v \in N(u)\)

\[
\text{Push}(S, v)
\]

Breadth First Search

• All edges go between vertices on the same layer or adjacent layers

Depth First Search

• Each edge goes between vertices on the same branch

• No cross edges
Connected Components

- Undirected Graphs

Computing Connected Components in $O(n+m)$ time
- A search algorithm from a vertex v can find all vertices in v's component
- While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

- A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in $O(n+m)$ time
- But it’s tricky!
- Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time

Topological Sort

- Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph

If a graph has a cycle, there is no topological sort
- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Lemma: If a graph is acyclic, it has a vertex with in degree 0
- Proof:
 - Pick a vertex \(v_1 \), if it has in-degree 0 then done
 - If not, let \((v_2, v_1)\) be an edge, if \(v_2 \) has in-degree 0 then done
 - If not, let \((v_3, v_2)\) be an edge . . .
 - If this process continues for more than \(n \) steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm
While there exists a vertex \(v \) with in-degree 0
 Output vertex \(v \)
 Delete the vertex \(v \) and all out going edges

Details for \(O(n+m) \) implementation
- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- \(m \) edge removals at \(O(1) \) cost each