CSE 421
Algorithms
Richard Anderson
Autumn 2015
Lecture 2
Announcements

• Homework 1, due Wednesday Oct 7
 – in class, paper turn in
 – pay attention to making explanations clear and understandable

• Reading
 – Chapter 1, Sections 2.1, 2.2
Office Hours

• Richard Anderson, CSE 582
 – Monday, 2:30-3:30; Friday, 2:30-3:30.
• Cyrus Rashtchian
 – Friday, 9:00-10:30
• Yeuqi Sheng
 – TBD
• Erin Yoon
 – TBD
• Kuai Yu
 – TBD
Formal Problem

• Input
 – Preference lists for m_1, m_2, \ldots, m_n
 – Preference lists for w_1, w_2, \ldots, w_n

• Output
 – Perfect matching M satisfying stability property:

$$\text{If } (m', w') \in M \text{ and } (m'', w'') \in M \text{ then}
(m' \text{ prefers } w' \text{ to } w'') \text{ or } (w'' \text{ prefers } m'' \text{ to } m')$$
Idea for an Algorithm

- m proposes to w
 - If w is unmatched, w accepts
 - If w is matched to m₂
 - If w prefers m to m₂, w accepts m, dumping m₂
 - If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
Initially all m in M and w in W are free

While there is a free m

w highest on m’s list that m has not proposed to

if w is free, then match (m, w)

else

suppose (m_2, w) is matched

if w prefers m to m_2

unmatch (m_2, w)

match (m, w)
Example

\[\begin{align*}
\text{m}_1 &: \text{w}_1 \text{ w}_2 \text{ w}_3 \\
\text{m}_2 &: \text{w}_1 \text{ w}_3 \text{ w}_2 \\
\text{m}_3 &: \text{w}_1 \text{ w}_2 \text{ w}_3
\end{align*}\]

\[\begin{align*}
\text{w}_1 &: \text{m}_2 \text{ m}_3 \text{ m}_1 \\
\text{w}_2 &: \text{m}_3 \text{ m}_1 \text{ m}_2 \\
\text{w}_3 &: \text{m}_3 \text{ m}_1 \text{ m}_2
\end{align*}\]

Order: \text{m}_1, \text{m}_2, \text{m}_3, \text{m}_1, \text{m}_3, \text{m}_1
Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and measures of progress
 – m’s proposals get worse (have higher m-rank)
 – Once w is matched, w stays matched
 – w’s partners get better (have lower w-rank)
Claim: If an m reaches the end of its list, then all the w’s are matched.
Claim: The algorithm stops in at most n^2 steps
When the algorithms halts, every \(w \) is matched

Why?

Hence, the algorithm finds a perfect matching
The resulting matching is stable

Suppose

\[(m_1, w_1) \in M, (m_2, w_2) \in M\]

\[m_1\] prefers \[w_2\] to \[w_1\]

How could this happen?
Result

• Simple, $O(n^2)$ algorithm to compute a stable matching

• Corollary
 – A stable matching always exists
A closer look

Stable matchings are not necessarily fair

\[
\begin{align*}
m_1 &: \ w_1 \ w_2 \ w_3 \\
m_2 &: \ w_2 \ w_3 \ w_1 \\
m_3 &: \ w_3 \ w_1 \ w_2 \\
w_1 &: \ m_2 \ m_3 \ m_1 \\
w_2 &: \ m_3 \ m_1 \ m_2 \\
w_3 &: \ m_1 \ m_2 \ m_3
\end{align*}
\]

How many stable matchings can you find?
Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result
 – All orderings of picking free m’s give the same result

• Proving this type of result
 – Reordering argument
 – Prove algorithm is computing something mores specific
 • Show property of the solution – so it computes a specific stable matching
M-rank and W-rank of matching

- **m-rank**: position of matching w in preference list
- **M-rank**: sum of m-ranks
- **w-rank**: position of matching m in preference list
- **W-rank**: sum of w-ranks

What is the M-rank?

What is the W-rank?
Suppose there are n m’s, and n w’s

- What is the minimum possible M-rank?

- What is the maximum possible M-rank?

- Suppose each m is matched with a random w, what is the expected M-rank?
Random Preferences

Suppose that the preferences are completely random

m_1: w_8 w_3 w_1 w_5 w_9 w_2 w_4 w_6 w_7 w_{10}
m_2: w_7 w_{10} w_1 w_9 w_3 w_4 w_8 w_2 w_5 w_6
...

If there are n m’s and n w’s, what is the expected value of the M-rank and the W-rank when the proposal algorithm computes a stable matching?
Best choices for one side may be bad for the other

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice
But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice

There is a stable matching where everyone gets their second choice
What is the run time of the Stable Matching Algorithm?

Initially all m in M and w in W are free
While there is a free m
 w highest on m’s list that m has not proposed to
 if w is free, then match (m, w)
 else
 suppose (m₂, w) is matched
 if w prefers m to m₂
 unmatch (m₂, w)
 match (m, w)

Executed at most n^2 times
O(1) time per iteration

- Find free m
- Find next available w
- If w is matched, determine m_2
- Test if w prefer m to m_2
- Update matching
What does it mean for an algorithm to be efficient?
Key ideas

• Formalizing real world problem
 – Model: graph and preference lists
 – Mechanism: stability condition

• Specification of algorithm with a natural operation
 – Proposal

• Establishing termination of process through invariants and progress measure

• Under specification of algorithm

• Establishing uniqueness of solution