CSE 421
Algorithms
Richard Anderson
Autumn 2015
Lecture 1

CSE 421 Course Introduction

- CSE 421, Introduction to Algorithms
 - MWF, 1:30-2:20 pm
 - MGH 421
- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - CSE 582
 - Office hours TBD
- Teaching Assistants
 - Cyrus Rashtchian
 - Yueqi Sheng
 - Erin Yoon
 - Kuai Yu

Announcements

- It’s on the web.
- Homework due Wednesdays
 - HW 1, Due October 7, 2015
 - It’s on the web (or will be soon)
- You should be on the course mailing list
 - But it will probably go to your uw.edu account

Text book

- Algorithm Design
 - Jon Kleinberg, Eva Tardos
- Read Chapters 1 & 2
- Expected coverage:
 - Chapter 1 through 7

Course Mechanics

- Homework
 - Due Wednesdays
 - About 5 problems, sometimes programming
 - Target: 1 week turnaround on grading
- Exams (In class)
 - Midterm, Monday, November 2 (probably)
 - Final, Monday, December 14, 2:30-4:20 pm
- Approximate grade weighting
 - HW: 50, MT: 15, Final: 35
- Course web
 - Slides, Handouts

All of Computer Science is the Study of Algorithms
How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem: Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability

```
\begin{align*}
& m_1: w_1 w_2 \\
& m_2: w_2 w_1 \\
& w_1: m_1 m_2 \\
& w_2: m_2 m_1
\end{align*}
```

Example (1 of 3)

```
\begin{align*}
& m_1: w_1 w_2 \\
& m_2: w_2 w_1 \\
& w_1: m_1 m_2 \\
& w_2: m_2 m_1
\end{align*}
```

Example (2 of 3)

```
\begin{align*}
& m_1: w_1 w_2 \\
& m_2: w_2 w_1 \\
& w_1: m_1 m_2 \\
& w_2: m_2 m_1
\end{align*}
```

Example (3 of 3)

```
\begin{align*}
& m_1: w_1 w_2 \\
& m_2: w_2 w_1 \\
& w_1: m_2 m_1 \\
& w_2: m_1 m_2
\end{align*}
```
Formal Problem

• Input
 – Preference lists for \(m_1, m_2, \ldots, m_n \)
 – Preference lists for \(w_1, w_2, \ldots, w_n \)

• Output
 – Perfect matching \(M \) satisfying stability property:

\[
\text{If } (m', w') \in M \text{ and } (m'', w'') \in M \text{ then}
\]

\[
(m' \text{ prefers } w' \text{ to } w'') \text{ or } (w'' \text{ prefers } m'' \text{ to } m')
\]

Idea for an Algorithm

m proposes to w
 If w is unmatched, w accepts
 If w is matched to \(m_2 \)
 If w prefers \(m \) to \(m_2 \), w accepts m, dumping \(m_2 \)
 If w prefers \(m_2 \) to \(m \), w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all \(m \) in M and w in W are free
While there is a free m
 w highest on m's list that m has not proposed to
 if w is free, then match (m, w)
 else
 suppose (m\(_2\), w) is matched
 if w prefers m to m\(_2\),
 unmatch (m\(_2\), w)
 match (m, w)

Example

\[
\begin{align*}
\text{Example:} & \\
\text{m}_1: & w_1, w_2, w_3 \\
\text{m}_2: & w_1, w_3, w_2 \\
\text{m}_3: & w_2, w_3, w_1 \\
\text{w}_1: & m_2, m_3, m_1 \\
\text{w}_2: & m_3, m_1, m_2 \\
\text{w}_3: & m_3, m_1, m_2
\end{align*}
\]

Does this work?

• Does it terminate?
• Is the result a stable matching?
• Begin by identifying invariants and measures of progress
 – m's proposals get worse (have higher m-rank)
 – Once w is matched, w stays matched
 – w's partners get better (have lower w-rank)

Claim: If an m reaches the end of its list, then all the w's are matched
Claim: The algorithm stops in at most n^2 steps

When the algorithm halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

$(m_1, w_1) \in M, (m_2, w_2) \in M$

m_1 prefers w_2 to w_1

How could this happen?

Result

• Simple, $O(n^2)$ algorithm to compute a stable matching
• Corollary
 – A stable matching always exists

A closer look

Stable matchings are not necessarily fair

Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result
 – All orderings of picking free m’s give the same result
• Proving this type of result
 – Reordering argument
 – Prove algorithm is computing something more specific
 • Show property of the solution – so it computes a specific stable matching
Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:
(m, w) is valid if (m, w) is in some stable matching
best(m): the highest ranked w for m such that (m, w) is valid
S* = {(m, best(m))}
Every execution of the proposal algorithm computes S*

Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W
Algorithm is the M-optimal algorithm
Proposal algorithms where w’s propose is W-Optimal

Best choices for one side may be bad for the other

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice

But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice
There is a stable matching where everyone gets their second choice

Key ideas

• Formalizing real world problem
 – Model: graph and preference lists
 – Mechanism: stability condition
• Specification of algorithm with a natural operation
 – Proposal
• Establishing termination of process through invariants and progress measure
• Under specification of algorithm
• Establishing uniqueness of solution