CSE 421 Course Introduction

- CSE 421, Introduction to Algorithms
 - MWF, 1:30-2:20 pm
 - MGH 421

- Instructor
 - Richard Anderson, anderson@cs.washington.edu
 - Office hours:
 - CSE 582
 - Office hours TBD

- Teaching Assistants
 - Cyrus Rashtchian
 - Yueqi Sheng
 - Erin Yoon
 - Kuai Yu
Announcements

• It’s on the web.
• Homework due Wednesdays
 – HW 1, Due October 7, 2015
 – It’s on the web (or will be soon)
• You should be on the course mailing list
 – But it will probably go to your uw.edu account
Text book

• Algorithm Design
• Jon Kleinberg, Eva Tardos

• Read Chapters 1 & 2

• Expected coverage:
 – Chapter 1 through 7
Course Mechanics

• Homework
 – Due Wednesdays
 – About 5 problems, sometimes programming
 – Target: 1 week turnaround on grading

• Exams (In class)
 – Midterm, Monday, November 2 (probably)
 – Final, Monday, December 14, 2:30-4:20 pm

• Approximate grade weighting
 – HW: 50, MT: 15, Final: 35

• Course web
 – Slides, Handouts
All of Computer Science is the Study of Algorithms
How to study algorithms

• Zoology
• Mine is faster than yours is
• Algorithmic ideas
 – Where algorithms apply
 – What makes an algorithm work
 – Algorithmic thinking
Introductory Problem: Stable Matching

• Setting:
 – Assign TAs to Instructors
 – Avoid having TAs and Instructors wanting changes
 • E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.
Formal notions

- Perfect matching
- Ranked preference lists
- Stability
Example (1 of 3)

$m_1: w_1 \ w_2$

$m_2: w_2 \ w_1$

$w_1: m_1 \ m_2$

$w_2: m_2 \ m_1$
Example (2 of 3)

\[m_1: w_1 \; w_2 \]
\[m_2: w_1 \; w_2 \]
\[w_1: m_1 \; m_2 \]
\[w_2: m_1 \; m_2 \]
Example (3 of 3)

\[m_1: w_1 \ w_2 \]
\[m_2: w_2 \ w_1 \]
\[w_1: m_2 \ m_1 \]
\[w_2: m_1 \ m_2 \]
Formal Problem

• Input
 – Preference lists for \(m_1, m_2, \ldots, m_n \)
 – Preference lists for \(w_1, w_2, \ldots, w_n \)

• Output
 – Perfect matching \(M \) satisfying stability property:

\[
\text{If } (m', w') \in M \text{ and } (m'', w'') \in M \text{ then } (m' \text{ prefers } w' \text{ to } w'') \text{ or } (w'' \text{ prefers } m'' \text{ to } m')
\]
Idea for an Algorithm

m proposes to w

If w is unmatched, w accepts
If w is matched to m₂
 If w prefers m to m₂ w accepts m, dumping m₂
 If w prefers m₂ to m, w rejects m

Unmatched m proposes to the highest w on its preference list that it has not already proposed to
Algorithm

Initially all \(m \) in \(M \) and \(w \) in \(W \) are free
While there is a free \(m \)
 \(w \) highest on \(m \)'s list that \(m \) has not proposed to
 if \(w \) is free, then match \((m, w)\)
 else
 suppose \((m_2, w)\) is matched
 if \(w \) prefers \(m \) to \(m_2 \)
 unmatch \((m_2, w)\)
 match \((m, w)\)
Example

\[m_1 : w_1 \ w_2 \ w_3 \]
\[m_2 : w_1 \ w_3 \ w_2 \]
\[m_3 : w_1 \ w_2 \ w_3 \]
\[w_1 : m_2 \ m_3 \ m_1 \]
\[w_2 : m_3 \ m_1 \ m_2 \]
\[w_3 : m_3 \ m_1 \ m_2 \]
Does this work?

• Does it terminate?
• Is the result a stable matching?

• Begin by identifying invariants and measures of progress
 – m’s proposals get worse (have higher m-rank)
 – Once w is matched, w stays matched
 – w’s partners get better (have lower w-rank)
Claim: If an m reaches the end of its list, then all the w’s are matched.
Claim: The algorithm stops in at most n^2 steps
When the algorithms halts, every w is matched

Why?

Hence, the algorithm finds a perfect matching
The resulting matching is stable

Suppose

\[(m_1, w_1) \in M, (m_2, w_2) \in M\]

\[m_1 \text{ prefers } w_2 \text{ to } w_1\]

How could this happen?
Result

• Simple, $O(n^2)$ algorithm to compute a stable matching

• Corollary
 – A stable matching always exists
A closer look

Stable matchings are not necessarily fair

\[\begin{align*}
 m_1 &: w_1 \ w_2 \ w_3 \\
 m_2 &: w_2 \ w_3 \ w_1 \\
 m_3 &: w_3 \ w_1 \ w_2 \\
 w_1 &: m_2 \ m_3 \ m_1 \\
 w_2 &: m_3 \ m_1 \ m_2 \\
 w_3 &: m_1 \ m_2 \ m_3
\end{align*} \]

How many stable matchings can you find?
Algorithm under specified

• Many different ways of picking m’s to propose
• Surprising result
 – All orderings of picking free m’s give the same result

• Proving this type of result
 – Reordering argument
 – Prove algorithm is computing something mores specific
 • Show property of the solution – so it computes a specific stable matching
Proposal Algorithm finds the best possible solution for M

Formalize the notion of best possible solution:

(m, w) is valid if (m, w) is in some stable matching

best(m): the highest ranked w for m such that (m, w) is valid

S* = {(m, best(m)}

Every execution of the proposal algorithm computes S*
Proof

See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W
Algorithm is the M-optimal algorithm
Proposal algorithms where w’s propose is W-Optimal
Best choices for one side may be bad for the other

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice

m₁:

m₂:

m₃:

m₄:

w₁:

w₂:

w₃:

w₄:
But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:
All m’s get first choice, all w’s get last choice

W proposal algorithm:
All w’s get first choice, all m’s get last choice

There is a stable matching where everyone gets their second choice
Key ideas

• Formalizing real world problem
 – Model: graph and preference lists
 – Mechanism: stability condition

• Specification of algorithm with a natural operation
 – Proposal

• Establishing termination of process through invariants and progress measure

• Under specification of algorithm

• Establishing uniqueness of solution