minimizing lateness: inversions

- **Definition.** An inversion in schedule S is a pair of jobs i and j such that $d_i < d_j$ but j scheduled before i.

- **Claim.** Swapping two adjacent, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

optimal schedules and inversions

- **Claim:** There is an optimal schedule with no idle time and no inversions

- **Proof:**
 - By previous argument there is an optimal schedule O with no idle time
 - If O has an inversion then it has a consecutive pair of requests in its schedule that are inverted and can be swapped without increasing lateness
optimal schedules and inversions

Eventually these swaps will produce an optimal schedule with no inversions

– Each swap decreases the number of inversions by 1
– There are a bounded number of (at most \(\frac{n(n-1)}{2}\)) inversions (we only care that this is finite.)

QED

minimum spanning trees (or forests)

• Given an undirected graph \(G=(V,E)\) with each edge \(e\) having a weight \(w(e)\)

• Find a subgraph \(T\) of \(G\) of minimum total weight s.t. every pair of vertices connected in \(G\) are also connected in \(T\)
 – if \(G\) is connected then \(T\) is a tree otherwise it is a forest

weighted undirected graph

![Weighted Undirected Graph](image)

greedy algorithm

Prim’s Algorithm:

– start at a vertex \(s\)
– add the cheapest edge adjacent to \(s\)
– repeatedly add the cheapest edge that joins the vertices explored so far to the rest of the graph
Prim's algorithm

Prim(G, w, s)
S ← {s}

while S≠V do
 of all edges e=(u,v) s.t. v∈S and u∈S select* one with the minimum value of w(e)
 S←S∪{v}
 pred[v]←u

*For each v∈S maintain small[v]=minimum value of w(e) over all vertices u∈S s.t. e=(u,v) is in of G

Kruskal's Algorithm

– Start with the vertices and no edges
– Repeatedly add the cheapest edge that joins two different components, i.e. that doesn't create a cycle

weighted undirected graph

why greed is good

• **Definition:** Given a graph G=(V,E), a cut of G is a partition of V into two non-empty pieces, S and V-S

• **Lemma:** For every cut (S,V-S) of G, there is a minimum spanning tree (or forest) containing any cheapest edge crossing the cut, i.e. connecting some node in S with some node in V-S.
 – call such an edge safe
cuts and spanning trees

the greedy algorithms always choose safe edges

Prim’s Algorithm

– Always chooses cheapest edge from current tree to rest of the graph
– This is cheapest edge across a cut which has the vertices of that tree on one side.
Kruskal's Algorithm

- Always chooses cheapest edge connecting two pieces of the graph that aren't yet connected
- This is the cheapest edge across any cut which has those two pieces on different sides and doesn't split any current pieces.

Kruskal's Algorithm
proof of lemma: exchange argument

Suppose you have an MST not using cheapest edge \(e \)

Endpoints of \(e \), \(u \) and \(v \) must be connected in \(T \)

proof of lemma

Suppose you have an MST \(T \) not using cheapest edge \(e \)

Endpoints of \(e \), \(u \) and \(v \) must be connected in \(T \)

proof of lemma

Suppose you have an MST \(T \) not using cheapest edge \(e \)

Endpoints of \(e \), \(u \) and \(v \) must be connected in \(T \)

\[w(e) \leq w(h) \]

proof of lemma

Suppose you have an MST \(T \) not using cheapest edge \(e \)

Endpoints of \(e \), \(u \) and \(v \) must be connected in \(T \)

\[w(e) \leq w(h) \]
implementation and analysis (kruskal)

• First sort the edges by weight \(O(m \log m)\)
• Go through edges from smallest to largest
 – if endpoints of edge \(e\) are currently in different components
 then add to the graph
 else skip
• Union-find data structure handles last part
• Total cost of last part: \(O(m \alpha(n))\) where \(\alpha(n) << \log m\)
• Overall \(O(m \log n)\)

union-find disjoint sets data structure

• Maintaining components
 – start with \(n\) different components
 one per vertex
 – find components of the two endpoints of \(e\)
 \(2m\) finds
 – union two components when edge connecting them is added
 \(n-1\) unions

prim’s algorithm with priority queues

• For each vertex \(u\) not in tree maintain current cheapest edge from tree to \(u\)
 – Store \(u\) in priority queue with key = weight of this edge
• Operations:
 – \(n-1\) insertions (each vertex added once)
 – \(n-1\) delete-mins (each vertex deleted once)
 pick the vertex of smallest key, remove it from the p.q.
 and add its edge to the graph
 – < \(m\) decrease-keys (each edge updates one vertex)

prim’s algorithm with priority queues

• Priority queue implementations
 – Array
 insert \(O(1)\), delete-min \(O(n)\), decrease-key \(O(1)\)
 total \(O(n+n^2+m)=O(n^2)\)
 – Heap
 insert, delete-min, decrease-key all \(O(\log n)\)
 total \(O(m \log n)\)
 – \(d\)-Heap \((d=m/n)\)
 insert, decrease-key \(O(\log_{m/n} n)\)
 delete-min \(O((m/n) \log_{m/n} n)\)
 total \(O(m \log_{m/n} n)\)
an application

Minimum cost network design:
- Build a network to connect all locations \(\{v_1, \ldots, v_n\} \)
- Cost of connecting \(v_i \) to \(v_j \) is \(w(v_i, v_j) > 0 \)
- Choose a collection of links to create that will be as cheap as possible
- Any minimum cost solution is an MST

if there is a solution containing a cycle then we can remove any edge and get a cheaper solution

application #2

Maximum Spacing Clustering
- Given a collection \(U \) of \(n \) objects \(\{p_1, \ldots, p_n\} \)
 Distance measure \(d(p_i, p_j) \) satisfying
 \[
 d(p_i, p_j) = 0 \quad d(p_i, p_j) > 0 \quad d(p_i, p_j) = d(p_j, p_i)
 \]
 Positive integer \(k \leq n \)
- Find a \(k \)-clustering, i.e. partition of \(U \) into \(k \) clusters \(C_1, \ldots, C_k \), such that the spacing between the clusters is as large possible where
 \[
 \text{spacing} = \min\{d(p_i, p_j) : p_i \text{ and } p_j \text{ in different clusters}\}
 \]

proof
- Removing the \(k-1 \) most expensive edges from an MST yields \(k \) components \(C_1, \ldots, C_k \) and the spacing for them is precisely the cost \(d^* \) of the \(k-1 \)-th most expensive edge in the tree
- Consider any other \(k \)-clustering \(C'_1, \ldots, C'_k \)
 - Since they are different and cover the same set of points there is some pair of points \(p_i, p_j \) such that \(p_i, p_j \) are in some cluster \(C \), but \(p_i, p_j \) are in different clusters \(C'_1 \) and \(C'_i \)
 Since \(p_i, p_j \) are in \(C \), \(p_i \) and \(p_j \) have a path between them all of whose edges have distance at most \(d^* \)
 This path must cross between clusters in the \(C' \) clustering so the spacing in \(C' \) is at most \(d^* \)
single-source shortest paths

• Given an (un)directed graph $G=(V,E)$ with each edge e having a non-negative weight $w(e)$ and a vertex v

• Find length of shortest paths from v to each vertex in G

a greedy algorithm

Dijkstra’s Algorithm:

– Maintain a set S of vertices whose shortest paths are known
 initially $S=\{s\}$

– Maintaining current best lengths of paths that only go through S to each of the vertices in G
 path-lengths to elements of S will be right, to $V-S$ they might not be right

– Repeatedly add vertex v to S that has the shortest tentative distance of any vertex in $V-S$
 update path lengths based on new paths through v

Dijkstra’s Algorithm

\[
\text{Dijkstra}(G,w,s) \\
S \leftarrow \{s\} \\
d[s] \leftarrow 0 \\
\text{while } S \neq V \text{ do} \\
\text{of all edges } e=(u,v) \text{ s.t. } v \notin S \text{ and } u \in S \text{ select* one with the minimum value of } d[u]+w(e) \\
S \leftarrow S \cup \{v\} \\
d[v] \leftarrow d[u]+w(e) \\
\text{pred}[v] \leftarrow u \\
\]

*For each $v \notin S$ maintain $d'[v]=\text{minimum value of } d[u]+w(e)$ over all vertices $u \in S$ s.t. $e=(u,v)$ is in of G
Dijkstra's Algorithm

Add to S

Update distances
Dijkstra's Algorithm

Add to S

Update distances

Dijkstra's Algorithm

Add to S

Update distances
Dijkstra's Algorithm

Add to S

Update distances

Dijkstra's Algorithm

Add to S

Update distances
Dijkstra's Algorithm

Add to S

Dijkstra's Algorithm

Update distances

Dijkstra's Algorithm Correctness

Suppose all distances to vertices in S are correct and u has smallest current value in V-S

\[d'(v) \leq d'(x) \]

\[x-v \text{ path length} \geq 0 \]

Therefore adding v to S keeps correct distances
Dijkstra's Algorithm Correctness

Dijkstra's Algorithm

- Algorithm also produces a tree of shortest paths to \(v \) following \(\text{pred} \) links
 - From \(w \) follow its ancestors in the tree back to \(v \)

- If all you care about is the shortest path from \(v \) to \(w \) simply stop the algorithm when \(w \) is added to \(S \)

Implementing Dijkstra's Algorithm

- Need to
 - keep current distance values for nodes in \(V-S \)
 - find minimum current distance value
 - reduce distances when vertex moved to \(S \)

data structure review

- **Priority Queue:**
 - Elements each with an associated \text{key}
 - Operations
 - \text{Insert}
 - \text{Find-min}
 - Return the element with the smallest key
 - \text{Delete-min}
 - Return the element with the smallest key and delete it from the data structure
 - \text{Decrease-key}
 - Decrease the key value of some element

- **Implementations**
 - Arrays: \(O(n) \) time find/delete-min, \(O(1) \) time insert/decrease-key
 - Heaps: \(O(\log n) \) time insert/decrease-key/delete-min, \(O(1) \) time find-min
Dijkstra's algorithm with priority queues

- For each vertex u not in tree maintain cost of current cheapest path through tree to u
 - Store u in priority queue with key = length of this path
- Operations:
 - $n-1$ insertions (each vertex added once)
 - $n-1$ delete-mins (each vertex deleted once)
 - pick the vertex of smallest key, remove it from the priority queue and add its edge to the graph
 - $<m$ decrease-keys (each edge updates one vertex)

Dijkstra's algorithm with priority queues

Priority queue implementations
- **Array**
 - insert $O(1)$, delete-min $O(n)$, decrease-key $O(1)$
 - total $O(n+n^2+m)=O(n^2)$
- **Heap**
 - insert, delete-min, decrease-key all $O(\log n)$
 - total $O(m \log n)$
- **d-Heap ($d=m/n$)**
 - insert, decrease-key $O(\log_{m/n} n)$
 - delete-min $O((m/n) \log_{m/n} n)$
 - total $O(m \log_{m/n} n)$

Dijskstra's algorithm with priority queues