breadth-first search

- Completely explore the vertices in order of their distance from \(s \)
- Naturally implemented using a queue

properties of BFS

- \(\text{BFS}(s) \) visits \(x \) if and only if there is a path in \(G \) from \(s \) to \(x \).
- Edges followed to undiscovered vertices define a “breadth first spanning tree” of \(G \)
- Layer \(l \) in this tree, \(L_l \)
 - those vertices \(u \) such that the shortest path in \(G \) from the root \(s \) is of length \(l \).
- On undirected graphs
 - All non-tree edges join vertices on the same or adjacent layers

depth-first search

- Completely explore the vertices in DFS order (duh)
- Naturally implemented using recursion
properties of BFS

On undirected graphs:
All non-tree edges join vertices on the same or adjacent layers.

BFS application: shortest paths

Tree gives shortest paths from start vertex

can label by distances from start

connected components

Want to answer questions of the form:

– Given: vertices u and v in G
– Is there a path from u to v?

Idea: create array A such that

$A[u] =$ smallest numbered vertex
that is connected to u
connected components

Want to answer questions of the form:
- Given: vertices u and v in G
- Is there a path from u to v?

Idea: create array A such that $A[u]$ = smallest numbered vertex that is connected to u

Q: Why not create an array $Path[u,v]$?

DFS(u) – recursive version

Global Initialization: mark all vertices “unvisited”
DFS(u)
- mark u “visited” and add u to R
- for each edge (u,v)
 - if (v is “unvisited”)
 - DFS(v)
- mark u “fully-explored”

properties of DFS(s)

- Like BFS(s):
 - DFS(s) visits x if and only if there is a path in G from s to x
 - Edges into undiscovered vertices define a "depth first spanning tree" of G
- Unlike the BFS tree:
 - the DFS spanning tree isn't minimum depth
 - its levels don't reflect min distance from the root
 - non-tree edges never join vertices on the same or adjacent levels
- but...

connected components

• initial state: all v unvisited
 for $s \leftarrow 1$ to n do
 if state(s) ≠ “fully-explored” then
 BFS(s): setting $A[u] \leftarrow s$ for each u found
 (and marking u visited/fully-explored)
 endif
 endfor

• Total cost: $O(n + m)$
 - each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
 - works also with depth first search
non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

- No cross edges.

bipartite graph

Definition:

Theorem:
Graph is bipartite iff does not contain an odd cycle.

bfs vs dfs

BFS for bipartite testing
DFS(v) for a directed graph

A directed graph \(G = (V, E) \) is **acyclic** if it has no **directed cycles**.

Terminology: A **directed acyclic graph** is also called a **DAG**.
topological sort

- **Given:** a directed acyclic graph (DAG) $G = (V, E)$
- **Output:** numbering of the vertices of G with distinct numbers from 1 to n so edges only go from lower number to higher numbered vertices

- Applications
 - nodes represent tasks
 - edges represent precedence between tasks
 - topological sort gives a sequential schedule for solving them

directed acyclic graph

in-degree 0 vertices

Lemma: Every DAG has a vertex of in-degree 0
topological sort

- Can do using DFS

- Alternative simpler idea:
 - Any vertex of in-degree 0 can be given number 1 to start
 - Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.
implementing topological sort

- Go through all edges, computing array with in-degree for each vertex $O(m + n)$
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0

Total cost: