hamiltonian cycle

- **HAM-CYCLE**: given an undirected graph $G = (V, E)$, does there exist a simple cycle Γ that contains every node in V.

- **Claim.** $\text{DIR-HAM-CYCLE} \leq_p \text{HAM-CYCLE}$.
- **Pf.** Given a directed graph $G = (V, E)$, construct an undirected graph G' with $3n$ nodes.
directed hamiltonian cycle

- Claim: G has a Hamiltonian cycle iff G' does.

- Pf. \Rightarrow
 - Suppose G has a directed Hamiltonian cycle Γ.
 - Then G' has an undirected Hamiltonian cycle (same order).

- Pf. \Leftarrow
 - Suppose G' has an undirected Hamiltonian cycle Γ'.
 - Γ' must visit nodes in G' using one of following two orders:

 ... B, G, R, B, G, R, B, G, R, B, ...

 ... B, R, G, B, R, G, B, R, G, B, ...
 - Blue nodes in Γ' make up directed Hamiltonian cycle Γ' in G, or reverse of one.

3-SAT \leq_p DIR-HAM-CYCLE

- Construction. Given 3-SAT instance Φ with n variables x_i and k clauses.
 - Construct G to have 2^n Hamiltonian cycles.
 - Intuition: traverse path i from left to right \iff set variable $x_i = 1$.

- Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE that has a Hamiltonian cycle iff Φ is satisfiable.

- Construction. First, create graph that has 2^n Hamiltonian cycles which correspond in a natural way to 2^n possible truth assignments.
3-SAT \leq_p DIR-HAM-CYCLE

- **Claim.** Φ is satisfiable iff G has a Hamiltonian cycle.
- **Pf.** \Rightarrow
 - Suppose 3-SAT instance has satisfying assignment x^*.
 - Then, define Hamiltonian cycle in G as follows:
 - if $x^*_i = 1$, traverse row i from left to right
 - if $x^*_i = 0$, traverse row i from right to left
 for each clause C_j, there will be at least one row i in which we are going in "correct" direction to splice node C_j into tour

longest path

- **SHORTEST-PATH.** Given a digraph $G = (V, E)$, does there exists a simple path of length at most k edges?
- **LONGEST-PATH.** Given a digraph $G = (V, E)$, does there exists a simple path of length at least k edges?
- **Claim.** 3-SAT \leq_p LONGEST-PATH.
- **Pf 1.** Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.
- **Pf 2.** Show HAM-CYCLE \leq_p LONGEST-PATH.

3-SAT \leq_p DIR-HAM-CYCLE

- **Pf.** \Leftarrow
 - Suppose G has a Hamiltonian cycle Γ.
 - If Γ enters clause node C_j, it must depart on mate edge.
 - thus, nodes immediately before and after C_j are connected by an edge e in G
 - removing C_j from cycle, and replacing it with edge e yields Hamiltonian cycle on $G - \{C_j\}$
 - Continuing in this way, we are left with Hamiltonian cycle Γ' in $G - \{C_1, C_2, \ldots, C_k\}$.
 - Set $x^*_i = 1$ iff Γ' traverses row i left to right.
 - Since Γ visits each clause node C_j, at least one of the paths is traversed in "correct" direction, and each clause is satisfied. *

traveling salesperson problem

- **TSP.** Given a set of n cities and a pairwise distance function $d(u, v)$, is there a tour of length $\leq D$?

![All 13,509 cities in US with a population of at least 500](http://www.tsp.gatech.edu)
traveling salesperson problem

• **TSP.** Given a set of n cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

3/9/2014

traveling salesperson problem

• **TSP.** Given a set of n cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

3/9/2014

traveling salesperson problem

• **TSP.** Given a set of n cities and a pairwise distance function \(d(u, v) \), is there a tour of length \(\leq D \)?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

3/9/2014

3-dimensional matching

• **3D-MATCHING.** Given n instructors, n courses, and n times, and a list of the possible courses and times each instructor is willing to teach, is it possible to make an assignment so that all courses are taught at different times?

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Course</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 423</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 226</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Wayne</td>
<td>COS 126</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 523</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 11-12:20</td>
</tr>
<tr>
<td>Tardos</td>
<td>COS 423</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>TTh 3-4:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 226</td>
<td>MW 11-12:20</td>
</tr>
<tr>
<td>Kleinberg</td>
<td>COS 423</td>
<td>MW 11-12:20</td>
</tr>
</tbody>
</table>
3-dimensional matching

- **3D-MATCHING.** Given disjoint sets X, Y, and Z, each of size n and a set $T \subseteq X \times Y \times Z$ of triples, does there exist a set of n triples in T such that each element of $X \cup Y \cup Z$ is in exactly one of these triples?

- **Claim.** 3-SAT \leq_P 3D-Matching.
 - **Pf.** Given an instance Φ of 3-SAT, we construct an instance of 3D-matching that has a perfect matching iff Φ is satisfiable.

3-dimensional matching

Construction. (part 1)

- Create gadget for each variable x_i with 2k core and tip elements.
- No other triples will use core elements.
- In gadget i, 3D-matching must use either both grey triples or both blue ones.

3-dimensional matching

Construction. (part 2)

- For each clause C_j create two elements and three triples.
- Exactly one of these triples will be used in any 3D-matching.
- Ensures any 3D-matching uses either (i) grey core of x_1 or (ii) blue core of x_2 or (iii) grey core of x_3.

3-dimensional matching

Construction. (part 3)

- For each tip, add a cleanup gadget.
3-Dimensional Matching

- **Claim.** Instance has a 3D-matching iff Φ is satisfiable.
- **Detail.** What are X, Y, and Z? Does each triple contain one element from each of X, Y, Z?

![Diagram of 3-Dimensional Matching]

3-colorability

- **3-COLOR:** Given an undirected graph G does there exists a way to color the nodes red, green, and blue so that no adjacent nodes have the same color?

![Diagram of 3-colorability]

register allocation

- **Register allocation.** Assign program variables to machine register so that no more than k registers are used and no two program variables that are needed at the same time are assigned to the same register.
- **Interference graph.** Nodes are program variables names, edge between u and v if there exists an operation where both u and v are "live" at the same time.
- **Observation.** [Chaitin 1982] Can solve register allocation problem iff interference graph is k-colorable.
- **3-COLOR $\leq_p k$-REGISTER-ALLOCATION for any constant $k \geq 3$.**
3-colorability

• Claim. 3-SAT \leq_p 3-COLOR.

• Pf. Given 3-SAT instance \(\Phi \), we construct an instance of 3-COLOR that is 3-colorable iff \(\Phi \) is satisfiable.

• Construction.
 i. For each literal, create a node.
 ii. Create 3 new nodes T, F, B; connect them in a triangle, and connect each literal to B.
 iii. Connect each literal to its negation.
 iv. For each clause, add gadget of 6 nodes and 13 edges.

3-colorability

• Claim. Graph is 3-colorable iff \(\Phi \) is satisfiable.

• Pf. \(\Rightarrow \) Suppose graph is 3-colorable.
 – Consider assignment that sets all T literals to true.
 – (ii) ensures each literal is T or F.
 – (iii) ensures a literal and its negation are opposites.
 – (iv) ensures at least one literal in each clause is T.
3-colorability

- Claim. Graph is 3-colorable iff Φ is satisfiable.
- Pf. \iff Suppose 3-SAT formula Φ is satisfiable.
 - Color all true literals T.
 - Color node below green node F, and node below that B.
 - Color remaining middle row nodes B.
 - Color remaining bottom nodes T or F as forced.

$$C_i = x_1 \lor x_2 \lor x_3$$