Define \(P \) (polynomial-time) to be
 – the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

Beyond \(P \)?

- There are many other natural, practical problems for which we don’t know any polynomial-time algorithms.
- For example: \textbf{decisionTSP}
 – Given a weighted graph \(G \) and an integer \(k \), does there exist a tour that visits all vertices in \(G \) having total weight at most \(k \)?

Satisfiability

- Boolean variables \(x_1, \ldots, x_n \)
 – taking values in \{0, 1\}. \(0 = \text{false}, 1 = \text{true} \)
- Literals
 – \(x_i \) or \(\neg x_i \) for \(i = 1, \ldots, n \)
- Clause
 – a logical OR of one or more literals
 – e.g. \((x_1 \lor \neg x_3 \lor x_7 \lor x_{12}) \)
- CNF formula
 – a logical AND of a bunch of clauses
- \(k \)-CNF formula
 – All clauses have exactly \(k \) variables
satisfiability

- CNF formula example
 \[(x_1 \lor \neg x_2 \lor x_3) \land (x_2 \lor \neg x_3 \lor x_1) \land (x_2 \lor \neg x_1 \lor x_3)\]
- If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is **satisfiable**
 - the one above is, the following isn't
 \[- x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3\]
- **3-SAT:** Given a CNF formula F with 3 variables per clause, is it satisfiable?

common property of these problems

- There is a special piece of information, a **short certificate** or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find
 - e.g.
 - DecisionTSP:
 - Independent-Set, Clique:
 - **3-SAT**:

The complexity class **NP**

NP consists of all decision problems where

- You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

and

- **No certificate** can fool your polynomial time verifier into saying YES for a NO instance

more precise definition of **NP**

- A decision problem is in **NP** iff there is a polynomial time procedure **verify(,,)**, and an integer \(k\) such that
 - for every input \(x\) to the problem that is a YES instance there is a certificate \(t\) with \(|t| \leq |x|^k\) such that **verify**(\(x,t\)) = YES and
 - for every input \(x\) to the problem that is a NO instance there does not exist a certificate \(t\) with \(|t| \leq |x|^k\) such that **verify**(\(x,t\)) = YES
CLIQUE is in \(NP \)

procedure \(\text{verify}(x,t) \)

if \(x \) is a well-formed representation of
a graph \(G = (V, E) \) and an integer \(k \),
and
\(t \) is a well-formed representation of a vertex
subset \(U \) of \(V \) of size \(k \),
and
\(U \) is a clique in \(G \),
then output "YES"
else output "I'm unconvinced"

keys to showing a problem is in \(NP \)

- What's the output? (must be \text{YES}/\text{NO})
- What must the input look like?
- Which inputs need a \text{YES} answer?
 - Call such inputs \text{YES} inputs/\text{YES} instances
- For every given \text{YES} input, is there a certificate
 that would help?
 - OK if some inputs need no certificate
- For any given \text{NO} input, is there a fake certificate
 that would trick you?

solving \(NP \) problems without hints

The only \textbf{obvious algorithm} for most of these
problems is \textbf{brute force}:
- try all possible certificates and check each one to see if it works.
- \textit{Exponential} time:
 - \(2^n \) truth assignments for \(n \) variables
 - \(n! \) possible TSP tours of \(n \) vertices
 - \(\binom{n}{k} \) possible \(k \) element subsets of \(n \) vertices
 - etc.
what we know

• Nobody knows if all problems in \textbf{NP} can be done in polynomial time, i.e. does \textbf{P} = \textbf{NP}?
 – one of the most important open questions in all of science.
 – huge practical implications

• Every problem in \textbf{P} is in \textbf{NP}

• Every problem in \textbf{NP} can be solved in exponential time

solving \textit{NP} problems in exponential time

NP-hardness & NP-completeness

• Alternative approach to proving problems not in \textbf{P}
 – show that they are at least as hard as any problem in \textbf{NP}

• Rough definition:
 – A problem is \textbf{NP-hard} iff it is at least as hard as any problem in \textbf{NP}
 – A problem is \textbf{NP-complete} iff it is both \textbf{NP-hard} in \textbf{NP}

P and NP
NP-hardness & NP-completeness

- **Definition:** A problem B is NP-hard iff every problem $A \in \mathbf{NP}$ satisfies $A \leq_p B$

- **Definition:** A problem B is NP-complete iff A is NP-hard and $A \in \mathbf{NP}$

- Even though we seem to have lots of hard problems in \mathbf{NP} it is not obvious that such super-hard problems even exist!

implications of the Cook-Levin theorem?

- There is at least one interesting super-hard problem in \mathbf{NP}

- Is that such a big deal?

- Yes, a jumping off point.
 - There are lots of other problems that can be solved if we had a polynomial-time algorithm for 3-SAT
 - Many of these problems are exactly as hard as 3-SAT

Cook-Levin Theorem

- **Theorem (Cook 1971, Levin 1973):**
 - 3-SAT is NP-complete.

- **Recall**
 - CNF formula
 \[(x_1 \lor \neg x_2 \lor x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \lor (x_2 \lor \neg x_1 \lor x_3) \]
 - If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable
 - 3-SAT: Given a 3-CNF formula F, is it satisfiable?

A useful property of polynomial-time reductions

- **Theorem:** If $A \leq_p B$ and $B \leq_p C$ then $A \leq_p C$

- **Proof idea:** (Using \leq^1_p)
 - Compose the reduction f from A to B with the reduction g from B to C to get a new reduction $h(x) = g(f(x))$ from A to C.
 - The general case is similar and uses the fact that the composition of two polynomials is also a polynomial
A useful property of polynomial-time reductions

- **Theorem:** If \(A \leq_p B \) and \(B \leq_p C \) then \(A \leq_p C \)

- **Proof idea:**

\[3\text{-SAT} \leq_p \text{Independent-Set} \]

- **A Tricky Reduction:**
 - mapping CNF formula \(F \) to a pair \(\langle G, k \rangle \)
 - Let \(m \) be the number of clauses of \(F \)
 - Create a vertex in \(G \) for each literal in \(F \)
 - Join two vertices \(u, v \) in \(G \) by an edge iff
 - \(u \) and \(v \) correspond to literals in the same clause of \(F \),
 (green edges) or
 - \(u \) and \(v \) correspond to literals \(x \) and \(\neg x \) (or vice versa) for some variable \(x \). (red edges)
 - Set \(k=m \)
 - Clearly polynomial-time

Cook-Levin theorem & implications

- **Theorem (Cook 1971, Levin 1973):**
 \[3\text{-SAT} \text{ is } \text{NP-complete} \] (for proof see CSE 431)

- **Corollary:** \(B \) is \text{NP-hard} \iff \(3\text{-SAT} \leq_p B \)
 (or \(A \leq_p B \) for any \text{NP-complete problem} \(A \))

- **Proof:**
 - If \(B \) is \text{NP-hard} then every problem in \text{NP} polynomial-time reduces to \(B \), in particular \(3\text{-SAT} \) does since it is in \text{NP}
 - For any problem \(A \) in \text{NP}, \(A \leq_p 3\text{-SAT} \) and so if \(3\text{-SAT} \leq_p B \) we have \(A \leq_p B \).
 therefore \(B \) is \text{NP-hard} if \(3\text{-SAT} \leq_p B \)

\[F: \quad (x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3) \]
3-SAT \leq_p Independent-Set

- **Correctness:**
 - If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
 - Consider the set U in G corresponding to the first satisfied literal in each clause.
 \[|U| = m \]
 Since U has only one vertex per clause, no two vertices in U are joined by green edges.
 Since a truth assignment never satisfies both x and $\neg x$, U doesn’t contain vertices labeled both x and $\neg x$ and so no vertices in U are joined by red edges.
 Therefore G has an independent set, U, of size at least m.
 - Therefore (G, m) is a YES for independent set.

3-SAT \leq_p Independent-Set

- **Correctness continued:**
 - If (G, m) is a YES for Independent-Set then there is a set U of m vertices in G containing no edge.
 Therefore U has precisely one vertex per clause because of the green edges in G.
 Because of the red edges in G, U does not contain vertices labeled both x and $\neg x$.
 Build a truth assignment A that makes all literals labeling vertices in U true and for any variable not labeling a vertex in U, assigns its truth value arbitrarily.
 By construction, A satisfies F.
 - Therefore F is a YES for 3-SAT.
3-SAT \leq_p Independent-Set

\[
F: (x_1 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)
\]

Given U, satisfying assignment is $x_1 = x_3 = x_4 = 0$, $x_2 = 0$ or 1.

Independent-Set is NP-complete

• We just showed that Independent-Set is NP-hard and we already knew Independent-Set is in NP.

• Corollary: Clique is NP-complete
 – We showed already that Independent-Set \leq_p Clique and Clique is in NP.