CSE 421: Algorithms

Winter 2014

Lecture 21: Edmonds-Karp and Project Selection

Reading:
Sections 7.3-7.5
Edmonds-Karp Algorithm

- **Use a shortest augmenting path** (via BFS in residual graph)

- **Time:** $O(n m^2)$

 - $O(mn)$ augmentations
current best: Goldberg-Rao

- Time: $O\left(m \min\{\frac{1}{m^2}, \frac{2}{n^3}\} \log \left(\frac{n^2}{m} \right) \log U \right)$

Likely:
will be near-linear time alg
almost $O(mn)$
bfs/shortest-path lemmas

Distance from \(s \) in \(G_f \) is never reduced by:

- **Deleting** an edge
 - Proof: no new (hence no shorter) path created

- **Adding** an edge \((u,v)\), provided \(v \) is nearer than \(u \)
 - Proof: BFS is unchanged, since \(v \) visited before \((u,v)\) examined
Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.
key lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P.
augmentation vs BFS

\[G : \]

\[G_f : \]

\[G_{f'} : \]
The Edmonds-Karp Algorithm performs $O(mn)$ flow augmentations.

Proof:
Call (u,v) critical for augmenting path P if it’s closest to s having min residual capacity

It will disappear from G_f after augmenting along P

In order for (u,v) to be critical again the (u,v) edge must re-appear in G_f but that will only happen when the distance to u has increased by 2

It won’t be critical again until farther from s so each edge critical at most $n/2$ times
critical edges in G_f

Shortest s-t path P in G_f

$\text{After augmenting along } P$

For (u, v) to be critical later for some flow f' it must be in G_f, so must have augmented along a shortest path containing (v, u)

Then we must have $d_{f'}(s, u) = d_{f'}(s, v) + 1 \geq d_f(s, v) + 1 = d_f(s, u) + 2$
Edmonds-Karp runs in $O(nm^2)$ time
project selection

• Given
 – a directed acyclic graph \(G=(V,E) \) representing precedence constraints on tasks (a task points to its predecessors)
 – a profit value \(p(v) \) associated with each task \(v \in V \) (may be positive or negative)

• Find
 – a set \(A \subseteq V \) of tasks that is closed under predecessors, i.e. if \((u,v) \in E \) and \(u \in A \) then \(v \in A \), that maximizes \(\text{Profit}(A) = \sum_{v \in A} p(v) \)
Each task points to its predecessor tasks
extended graph
extended graph G'

For each vertex v
If $p(v) \geq 0$ add (s,v) edge with capacity $p(v)$
If $p(v) < 0$ add (v,t) edge with capacity $-p(v)$
extended graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S, T) in G', the set $A=S\setminus\{s\}$
 - satisfies precedence constraints
 - has maximum possible profit in G

- Cut capacity with $S=\{s\}$ is just $C=\sum_{v: \ p(v) \geq 0} p(v)$
 - $\text{Profit}(A) \leq C$ for any set A

- To satisfy precedence constraints don’t want any original edges of G going forward across the minimum cut
 - That would correspond to a task in $A=S\setminus\{s\}$ that had a predecessor not in $A=S\setminus\{s\}$

- Set capacity of each of the edges of G to $C+1$
 - The minimum cut has size at most C
extended graph G'

```
<table>
<thead>
<tr>
<th>Capacity C</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>-1</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>-3</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>-5</td>
</tr>
<tr>
<td>-6</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>-13</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>-13</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>-5</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>14</td>
</tr>
</tbody>
</table>
```

Graph with nodes s, t, and edges labeled with capacities.
extended graph G'

Cut value $= 13 + 3 + 2 + 3 + 4$
$= 13 + 3$
$+ C - 4 - 8 - 10 - 11 - 12 - 14$

$C = \sum p(v)$
$\forall v: p(v) > 0$

$\text{Cut value} = - (\text{surplus} - \text{spend}) + C - (\text{make} \text{ } \text{spend})$
$= C - \text{make} + \text{spend}$
$= C - \text{Profit}(A)$

$\min \text{Cut}$ maximizes the profit.
project selection

- **Claim**: Any s-t-cut \((S,T)\) in \(G'\) such that \(A=S\setminus\{s\}\) satisfies precedence constraints has capacity
 \[c(S,T) = C - \sum_{v \in A} p(v) = C - \text{Profit}(A) \]

- **Corollary**: A minimum cut \((S,T)\) in \(G'\) yields an optimal solution \(A=S\setminus\{s\}\) to the profit selection problem

- **Algorithm**: Compute maximum flow \(f\) in \(G'\), find the set \(S\) of nodes reachable from \(s\) in \(G'_f\) and return \(S\setminus\{s\}\)
proof of claim

- **A=S-{s}** satisfies precedence constraints
 - No edge of \(G \) crosses forward out of \(A \) since those edges have capacity \(C+1 \)
 - Only forward edges cut are of the form \((v,t)\) for \(v \in A \) or \((s,v)\) for \(v \notin A \)
 - The \((v,t)\) edges for \(v \in A \) contribute
 \[
 \sum_{v \in A: p(v) < 0} -p(v) = - \sum_{v \in A: p(v) < 0} p(v)
 \]
 - The \((s,v)\) edges for \(v \notin A \) contribute
 \[
 \sum_{v \notin A: p(v) \geq 0} p(v) = C - \sum_{v \in A: p(v) \geq 0} p(v)
 \]
 - Therefore the total capacity of the cut is
 \[
 c(S, T) = C - \sum_{v \in A} p(v) = C - \text{Profit}(A)
 \]