Edmonds-Karp Algorithm

- Use a **shortest** augmenting path
 (via BFS in residual graph)

- Time: $O(n m^2)$

bfs/shortest-path lemmas

Distance from s in G_i is never reduced by:

- **Deleting** an edge
 Proof: no new (hence no shorter) path created

- **Adding** an edge (u,v), **provided** v is nearer than u
 Proof: BFS is unchanged, since v visited before (u,v) examined
key lemma

Let f be a flow, G_f the residual graph, and P a shortest augmenting path. Then no vertex is closer to s after augmentation along P.

Proof: Augmentation along P only deletes forward edges, or adds back edges that go to previous vertices along P.

augmentation vs BFS

G: G_f G_f'

G: G_f G_f'

theorem

The Edmonds-Karp Algorithm performs $O(mn)$ flow augmentations.

Proof:
Call (u,v) critical for augmenting path P if it's closest to s having min residual capacity.

It will disappear from G_f after augmenting along P.

In order for (u,v) to be critical again the (u,v) edge must re-appear in G_f but that will only happen when the distance to u has increased by 2 (next slide).

It won't be critical again until farther from s so each edge critical at most $n/2$ times.
critical edges in G_f

Shortest s-t path P in G_f

After augmenting along P

For (u,v) to be critical later for some flow f' it must be in G_r
since this is a shortest path so must have augmented along a shortest path containing (v,u)

Then we must have $d_r(s,u) = d_r(s,v) + 1 \geq d_r(s,v) + 1 = d_r(s,u) + 2$

project selection

- **Given**
 - a directed acyclic graph $G=(V,E)$ representing precedence constraints on tasks (a task points to its predecessors)
 - a profit value $p(v)$ associated with each task $v \in V$ (may be positive or negative)

- **Find**
 - a set $A \subseteq V$ of tasks that is closed under predecessors, i.e. if $(u,v) \in E$ and $u \in A$ then $v \in A$,
 that maximizes $\text{Profit}(A) = \sum_{v \in A} p(v)$

corollary

- Edmonds-Karp runs in $O(nm^2)$ time

project selection graph

Each task points to its predecessor tasks
extended graph G'

- Want to arrange capacities on edges of G so that for minimum s-t-cut (S, T) in G', the set $A = S\setminus\{s\}$
 - satisfies precedence constraints
 - has maximum possible profit in G
- Cut capacity with $S = \{s\}$ is just $C = \sum_{v : p(v) \geq 0} p(v)$
 - $\text{Profit}(A) \leq C$ for any set A
- To satisfy precedence constraints don’t want any original edges of G going forward across the minimum cut
 - That would correspond to a task in $A = S \setminus \{s\}$ that had a predecessor not in $A = S \setminus \{s\}$
- Set capacity of each of the edges of G to $C+1$
 - The minimum cut has size at most C
extended graph G'

Cut value
\[= 13 + 3 + 2 + 3 + 4\]
\[= 13 + 3 + 4 - 8 - 10 - 11 - 12 + 14\]

proof of claim

- $A = S \setminus \{s\}$ satisfies precedence constraints
 - No edge of G crosses forward out of A since those edges have capacity $C + 1$
 - Only forward edges cut are of the form (v, t) for $v \in A$ or (s, v) for $v \not\in A$
 - The (v, t) edges for $v \in A$ contribute
 \[\sum_{v \in A} p(v) = \sum_{v \in A} p(v)\]
 - The (s, v) edges for $v \not\in A$ contribute
 \[\sum_{v \not\in A, p(v) \geq 0} p(v) = C \sum_{v \not\in A, p(v) \geq 0} p(v)\]
 - Therefore the total capacity of the cut is
 \[c(S, T) = C - \sum_{v \in A} p(v) = C - \text{Profit}(A)\]

project selection

- **Claim**: Any s-t-cut (S, T) in G' such that $A = S \setminus \{s\}$ satisfies precedence constraints has capacity
 \[c(S, T) = C - \sum_{v \in A} p(v) = C - \text{Profit}(A)\]

- **Corollary**: A minimum cut (S, T) in G' yields an optimal solution $A = S \setminus \{s\}$ to the profit selection problem

- **Algorithm**: Compute maximum flow f in G', find the set S of nodes reachable from s in G', and return $S \setminus \{s\}$