CSE 421: Algorithms

Winter 2014
Lecture 17: Sequence alignment and Bellman-Ford

Reading:
Sections 6.6-6.10

sequence alignment: edit distance

• **Given:**
 – Two strings of characters \(A = a_1 a_2 ... a_n \) and \(B = b_1 b_2 ... b_m \)

• **Find:**
 – The minimum number of edit steps needed to transform \(A \) into \(B \) where an edit can be:
 – insert a single character
 – delete a single character
 – substitute one character by another

recursive solutions

• **Sub-problems:** Edit distance problems for all prefixes of \(A \) and \(B \) that don’t include all of both \(A \) and \(B \)

• Let \(D(i,j) \) be the number of edits required to transform \(a_1 a_2 ... a_i \) into \(b_1 b_2 ... b_j \)

• Clearly \(D(0,0) = 0 \)

computing \(D(n,m) \)

• Imagine how best sequence handles the last characters \(a_n \) and \(b_m \)

• Think of \(b_1 b_2 ... b_m \) as fixed and we want to edit \(a_1 a_2 ... a_n \). How will the last character become \(b_m \)?
computing $D(n,m)$

- Imagine how best sequence handles the last characters a_n and b_m.
- If best sequence of operations
 - deletes a_n then $D(n,m) =$
 - inserts b_m then $D(n,m) =$
 - replaces a_n by b_m then
 $D(n,m) =$
 - matches a_n and b_m then
 $D(n,m) =$

recursive algorithm $D(n,m)$

\[
\text{if } n = 0 \text{ then return } (m) \text{ else if } m = 0 \text{ then return } (n) \text{ else if } a_n = b_m \text{ then replace-cost } \leftarrow 0 \text{ else replace-cost } \leftarrow 1 \text{ endif return } (\min(D(n-1, m) + 1, D(n, m-1) + 1, D(n-1, m-1) + \text{replace-cost}))
\]

dynamic programming

\[
\text{for } j = 0 \text{ to } m: \quad D(0,j) \leftarrow j \text{ endfor for } i = 1 \text{ to } n: \quad D(i,0) \leftarrow i \text{ endfor for } i = 1 \text{ to } n \text{ for } j = 1 \text{ to } m: \quad \text{if } a_i = b_j \text{ then replace-cost } \leftarrow 0 \text{ else replace-cost } \leftarrow 1 \text{ endif endfor } D(i,j) \leftarrow \min(D(i-1, j-1) + \text{replace-cost}, D(i-1, j) + 1, D(i, j-1) + 1)
\]
Example Run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example Run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment / edit sequence:

 A G A C A T T G
 _ G A G _ T T A
computing edit distance on strings of length m and n

- **Time:**
- **Space:**

saving space

- To compute the distance values we only need the last two rows (or columns)
 - $O(\min(m,n))$ space
- To compute the alignment/sequence of operations
 - seem to need to store all $O(mn)$ pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in $O(\min(m,n))$ space and retain $O(mn)$ time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal
 - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
 - Ideas are neat, though

saving space

- Alignment corresponds to a path through the table from lower right to upper left
 - Must pass through the middle column
- Recursively compute the entries for the middle column from the left
 - If we knew the cost of completing each then we could figure out where the path crossed
 - Problem
 - There are n possible strings to start from.
 - Solution
 - Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings
 - Can reuse the storage on the left when solving the right hand problem

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
recurrence

\[T(m,n) \leq cmn + T\left(q, \frac{n}{2}\right) + T\left(m - q, \frac{n}{2}\right) \]
\[T(m,1) \leq cm \]
\[T(1,n) \leq cn \]

shortest paths with negative edge weights

• Diškrta’s algorithm failed with negative-cost edges
 – What can we do in this case?
 – Negative-cost cycles could result in shortest paths with length \(-\infty\)

• Suppose no negative-cost cycles in \(G\)
 – Shortest path from \(s\) to \(t\) has at most \(n-1\) edges
 If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can’t have negative cost

shortest paths with negative edge weights

We want to grow paths from \(s\) to \(t\) based on the \# of edges in the path
• Let \(\text{Cost}(s,t,i)\)=cost of minimum-length path from \(s\) to \(t\) using up to \(i\) hops.

 – \(\text{Cost}(v,t,0) = \begin{cases} 0 & \text{if } v=t \\ \infty & \text{otherwise} \end{cases} \)

 – \(\text{Cost}(v,t,i) = \min\{ \text{Cost}(v,t,i-1), \min_{(w) \in E} (c_{vw} + \text{Cost}(w,t,i-1)) \} \)
Bellman-Ford

- Observe that the recursion for $\text{Cost}(s,t,i)$ doesn’t change t
 - Only store an entry for each v and i
 - Termed $\text{OPT}(v,i)$ in the text
- Also observe that to compute $\text{OPT}(*,i)$ we only need $\text{OPT}(*,i-1)$
 - Can store a current and previous copy in $O(n)$ space.

Bellman-Ford

```
Bellman-Ford

\text{ShortestPath}(G,s,t)
\text{for all } v \in V
  \text{OPT}[v] \leftarrow \infty
\text{OPT}[t] \leftarrow 0
\text{for } i = 1 \text{ to } n-1 \text{ do}
  \text{for all } v \in V \text{ do}
    \text{OPT}'[v] \leftarrow \min_{(v,w) \in E} (c_{vw} + \text{OPT}[w])
  \text{for all } v \in V \text{ do}
    \text{OPT}[v] \leftarrow \min(\text{OPT}'[v], \text{OPT}[v])
\text{return } \text{OPT}[s]
```

Bellman-Ford
Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford
negative cycles

• **Claim:** There is a negative-cost cycle that can reach \(t \) iff for some vertex \(v \in V, \ Cost(v,t,n) < Cost(v,t,n-1) \)

• **Proof:**

 – We already know that if there aren’t any then we only need paths of length up to \(n-1 \)

 – For the other direction

 The recurrence computes \(Cost(v,t,i) \) correctly for any number of hops \(i \)

 The recurrence reaches a fixed point if for every \(v \in V, \ Cost(v,t,i)=Cost(v,t,i-1) \)

 A negative-cost cycle means that eventually some \(Cost(v,t,i) \) gets smaller than any given bound

 Can’t have a negative cost cycle if for every \(v \in V, \ Cost(v,t,n)=Cost(v,t,n-1) \)
last details

- Can run algorithm and stop early if the OPT and OPT' arrays are ever equal
 - Even better, one can update only neighbors v of vertices w with $OPT'[w] \neq OPT[w]$
- Can store a successor pointer when we compute OPT
 - Homework assignment

- By running for n steps we can find some vertex v on a negative cycle and use the successor pointers to find the cycle