fast exponentiation

- **Power(a,n)**
 - **Input:** integer n and number a
 - **Output:** a^n

- **Obvious algorithm**
 - n-1 multiplications

- **Observation:**
 - if n is even, n=2m, then a^n=a^m*a^m

divide & conquer algorithm

```
Power(a,n):
  if n=0 then
    return(1)
  else if n=1 then
    return(a)
  else
    x ← Power(a, ⌊n/2⌋)
    if n is even then
      return(x*x)
    else
      return(a*x*x)
```

analysis

- **Worst-case recurrence**
 - \(T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + 2 \) for \(n \geq 1 \)
 - \(T(1) = 0 \)

- **Time:**

- **More precise analysis:**
 - \(T(n) = \lceil \log_2 n \rceil + \# \text{ of 1's in } n \text{'s binary representation} \)
practical application: RSA

• Instead of a^n want $a^n \mod N$
 – $a^{i+j} \mod N = ((a^i \mod N) \cdot (a^j \mod N)) \mod N$
 – same algorithm applies with each $x \cdot y$ replaced by $(x \mod N) \cdot (y \mod N) \mod N$

• In RSA cryptosystem (widely used for security)
 – need $a^n \mod N$ where a, n, N each typically have 1024 bits
 – Power: at most 2048 multiples of 1024 bit numbers relatively easy for modern machines
 – Naive algorithm: 2^{1024} multiplies

binary search for roots (bisection method)

• Given:
 – continuous function f and two points $a \lt b$ with $f(a) \leq 0$ and $f(b) > 0$

• Find:
 – approximation to c s.t. $f(c)=0$ and $a < c < b$

bisection method

\[
\text{Bisection}(a, b, \varepsilon): \quad \begin{align*}
\text{if } (a-b) < \varepsilon & \text{ then return}(a) \\
\text{else} & \\
& c \leftarrow (a+b)/2 \\
& \text{if } f(c) \leq 0 \text{ then return}(\text{Bisection}(c, b, \varepsilon)) \\
& \text{else return}(\text{Bisection}(a, c, \varepsilon))
\end{align*}
\]

analysis

• At each step we halved the size of the interval
• It started at size $b-a$
• It ended at size ε

• # of calls to f is $\log_2 \left(\frac{b-a}{\varepsilon} \right)$
old favorites

• Binary search
 – One subproblem of half size plus one comparison
 – Recurrence $T(n) = T(\lceil n/2 \rceil) + 1$ for $n \geq 2$
 – $T(1) = 0$
 – So $T(n)$ is $\lceil \log_2 n \rceil + 1$

• Mergesort
 – Two subproblems of half size plus merge cost of $n-1$
 comparisons
 – Recurrence $T(n) \leq 2T(\lceil n/2 \rceil) + n - 1$ for $n \geq 2$
 – $T(1) = 0$
 – Roughly n comparisons at each of $\log_2 n$ levels of recursion
 – So $T(n)$ is roughly $2n \log_2 n$

closest pair in the plane

No single direction along which one can sort points to guarantee success!

euclidean closest pair

• Given a set P of n points $p_1,...,p_n$ with real-valued coordinates

• Find the pair of points $p_i, p_j \in P$ such that the Euclidean distance $d(p_i, p_j)$ is minimized

• $\Theta(n^2)$ possible pairs

• In one dimension?

• What about points in the plane?

divide and conquer?

• Sort the points by their x coordinates

• Split the points into two sets of $n/2$ points L and R by x
 coordinate

• Recursively compute
 – closest pair of points in L, (p_L, q_L)
 – closest pair of points in R, (p_R, q_R)

• Let $\delta = \min(d(p_L, q_L), d(p_R, q_R))$ and let (p, q) be the pair of
 points that has distance δ
Any pair of points $p \in L$ and $q \in R$ with $d(p, q) < \delta$ must lie in band $\delta/2$

No two points can be in the same grey box.

Only need to check pairs of points up to 2 rows apart. At most a constant # of other points!

Sort points by y coordinate ahead of time

On recombination only compare each point in δ-band of $L \cup R$ to the 11 points in δ-band of $L \cup R$ above it in the y sorted order

– If any of those distances is better than δ replace (p, q) by the best of those pairs

$O(n \log n)$ for x and y sorting at start

Two recursive calls on problems on half size

$O(n)$ recombination

Total:
sometimes two sub-problems aren’t enough

• More general divide and conquer
 – You’ve broken the problem into a different sub-problems
 – Each has size at most n/b
 – The cost of the break-up and recombining the sub-problem solutions is $O(n^k)$

• Recurrence: $T(n) \leq a \cdot T(n/b) + c \cdot n^k$

master divide and conquer recurrence

• If $T(n) \leq a \cdot T(n/b) + c \cdot n^k$ for $n > b$ then
 – if $a > b^k$ then $T(n)$ is $\Theta(n \log_b a)$
 – if $a < b^k$ then $T(n)$ is $\Theta(n^k)$
 – if $a = b^k$ then $T(n)$ is $\Theta(n^k \log n)$

proving the master recurrence

Problem size $T(n)=a \cdot T(n/b)+c \cdot n^k$ # probs

master divide and conquer recurrence
proving the master recurrence

\[T(n) = a \cdot T(n/b) + c \cdot n^k \]

geometric series

- \(S = t + tr + tr^2 + \ldots + tr^{n-1} \)
- \(r \cdot S = tr + tr^2 + \ldots + tr^{n-1} + tr^n \)
- \((r-1)S = tr^n - t\)
- so \(S = t \frac{(r^n - 1)}{(r-1)} \) if \(r \neq 1 \).

- **Simple rule**
 - If \(r \neq 1 \) then \(S \) is a constant times largest term in series

total cost

- **Geometric series**
 - ratio \(\frac{a}{b^k} \)
 - \(d+1 = \log_b n + 1 \) terms
 - first term \(cn^k \), last term \(ca^d \)
- If \(\frac{a}{b^k} = 1 \)
 - all terms are equal \(T(n) \) is \(\Theta(n^k \log n) \)
- If \(\frac{a}{b^k} < 1 \)
 - first term is largest \(T(n) \) is \(\Theta(n^k) \)
- If \(\frac{a}{b^k} > 1 \)
 - last term is largest \(T(n) \) is

\[\Theta(a^d) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a}) \]

proving the master recurrence

\[T(n) = a \cdot T(n/b) + c \cdot n^k \]