6.1 Weighted Interval Scheduling
Weighted Interval Scheduling

Weighted interval scheduling problem.
- Job j starts at s_j, finishes at f_j, and has weight or value v_j.
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

How?
- Divide & Conquer?
- Greedy?
Recall. Greedy algorithm works if all weights are 1.
- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Exercises: by “density” = weight per unit time? Other ideas?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.

Def. $p(j) =$ largest index $i < j$ such that job i is compatible with j.

Ex: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

<table>
<thead>
<tr>
<th>j</th>
<th>p(j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Dynamic Programming: Binary Choice

Notation. \(OPT(j) = \) value of optimal solution to the problem consisting of job requests 1, 2, ..., \(j \).

- **Case 1:** Optimum selects job \(j \).
 - Can't use incompatible jobs \(\{ p(j) + 1, p(j) + 2, \ldots, j - 1 \} \)
 - Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(p(j) \)

- **Case 2:** Optimum does not select job \(j \).
 - Must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., \(j-1 \)

\[
OPT(j) = \begin{cases}
0 & \text{if } j = 0 \\
\max \{ v_j + OPT(p(j)), OPT(j-1) \} & \text{otherwise}
\end{cases}
\]
Weighted Interval Scheduling: Brute Force Recursion

Brute force recursive algorithm.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Compute-Opt(\(j \)) {
 if (\(j = 0 \))
 return 0
 else
 return max(\(v_j + \text{Compute-Opt}(p(j)) \), \text{Compute-Opt}(j-1))
}
Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm is correct, but spectacularly slow because of redundant sub-problems ⇒ exponential time.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

\[
\begin{array}{cccccc}
& & & 5 & 4 & 3 \\
& & 4 & 3 & 2 & 2 \\
& 3 & 2 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 & 5 \\
p(1) = 0, p(j) = j-2
\end{array}
\]
Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

Input: \(n, s_1, \ldots, s_n, f_1, \ldots, f_n, v_1, \ldots, v_n \)

Sort jobs by finish times so that \(f_1 \leq f_2 \leq \ldots \leq f_n \).

Compute \(p(1), p(2), \ldots, p(n) \)

Iterative-Compute-Opt {
 \[\text{OPT}[0] = 0\]
 \[\text{for } j = 1 \text{ to } n\]
 \[\text{OPT}[j] = \max(v_j + \text{OPT}[p(j)], \text{OPT}[j-1])\]
}

Output \(\text{OPT}[n] \)

Claim: \(\text{OPT}[j] \) is value of optimal solution for jobs 1..j

Timing: Easy. Main loop is \(O(n) \); sorting is \(O(n \log n) \); what about \(p(j) \)?
Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \leq f_2 \leq \ldots \leq f_n$.

Def. $p(j) =$ largest index $i < j$ such that job i is compatible with j.

Ex: $p(8) = 5$, $p(7) = 3$, $p(2) = 0$.

<table>
<thead>
<tr>
<th>j</th>
<th>v_j</th>
<th>p_j</th>
<th>opt_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Label jobs by finishing time: \(f_1 \leq f_2 \leq \ldots \leq f_n \).
\(p(j) = \) largest \(i < j \) s.t. job \(i \) is compatible with \(j \).

Exercise: try other concrete examples:
If all \(v_j = 1 \): greedy by finish time \(\rightarrow 1, 4, 8 \)
what if \(v_2 > v_1 \), but \(< v_1 + v_4 \)?
\(v_2 > v_1 + v_4 \), but \(v_2 + v_6 < v_1 + v_7 \), say? etc.

\[
\begin{array}{ccc}
 j & p_j & v_j & \max(v_j + \text{opt}[p(j)], \text{opt}[j-1]) = \text{opt}[j] \\
 0 & - & - & - & 0 \\
 1 & 0 & 2 & \max(2+0, 0) = 2 \\
 2 & 0 & 3 & \max(3+0, 2) = 3 \\
 3 & 0 & 1 & \max(1+0, 3) = 3 \\
 4 & 1 & 6 & \max(6+2, 3) = 8 \\
 5 & 0 & 9 & \max(9+0, 8) = 9 \\
 6 & 2 & 7 & \max(7+3, 9) = 10 \\
 7 & 3 & 2 & \max(2+3, 10) = 10 \\
 8 & 5 & ? & \max(\?+9, 10) = ?
\end{array}
\]

Exercise: What values of \(v_8 \) cause it to be in/excluded from \(\text{opt} \)?
Weighted Interval Scheduling: Finding a Solution

Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?

A. Do some post-processing - “traceback”

```plaintext
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
    if (j = 0)
        output nothing
    else if (v_j + OPT[p(j)] > OPT[j-1])
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```

- # of recursive calls ≤ n ⇒ O(n).
Sidebar: why does job ordering matter?

It’s *Not* for the same reason as in the greedy algorithm for unweighted interval scheduling.

Instead, it’s because it allows us to consider only a small number of subproblems (O(n)), vs the exponential number that seem to be needed if the jobs aren’t ordered (seemingly, *any* of the 2^n possible subsets might be relevant)

Don’t believe me? Think about the analogous problem for weighted *rectangles* instead of intervals… (i.e., pick max weight non-overlapping subset of a set of axis-parallel rectangles.) Same problem for squares or circles also appears difficult.
6.4 Knapsack Problem
Knapsack problem.
- Given n objects and a “knapsack.”
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: $\{3, 4\}$ has value 40.

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
<th>V/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
<td>3.60</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
<td>3.66</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

Greedy: repeatedly add item with maximum ratio v_i / w_i.
Ex: $\{5, 2, 1\}$ achieves only value $= 35 \Rightarrow$ greedy not optimal.

[NB greedy is optimal for “fractional knapsack”: take #5 + 4/6 of #4]
Dynamic Programming: False Start

Def. $\text{OPT}(i) = \text{max profit subset of items 1, ..., i.}$

- **Case 1:** OPT does not select item i.
 - OPT selects best of $\{1, 2, ..., i-1\}$

- **Case 2:** OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!
Dynamic Programming: Adding a New Variable

Def. $OPT(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w$.

- **Case 1:** OPT does not select item i.
 - OPT selects best of $\{1, 2, \ldots, i-1\}$ using weight limit w

- **Case 2:** OPT selects item i.
 - new weight limit $= w - w_i$
 - OPT selects best of $\{1, 2, \ldots, i-1\}$ using this new weight limit

$$
OPT(i, w) = \begin{cases}
0 & \text{if } i = 0 \\
OPT(i-1, w) & \text{if } w_i > w \\
\max\{OPT(i-1, w), v_i + OPT(i-1, w-w_i)\} & \text{otherwise}
\end{cases}
$$
Knapsack Problem: Bottom-Up

$OPT(i, w) = \text{max profit subset of items } 1, \ldots, i \text{ with weight limit } w.$

Input: $n, w_1, \ldots, w_n, v_1, \ldots, v_n$

```plaintext
for w = 0 to W
    OPT[0, w] = 0

for i = 1 to n
    for w = 1 to W
        if (w_i > w)
            OPT[i, w] = OPT[i-1, w]
        else
            OPT[i, w] = max {OPT[i-1, w], v_i + OPT[i-1, w-w_i]}

return OPT[n, W]
```

(Correctness: prove it by induction on i & w.)
Knapsack Algorithm

OPT: \{ 4, 3 \}
value = 22 + 18 = 40

if (w_i > w)
 OPT[i, w] = OPT[i-1, w]
else
 OPT[i, w] = max\{OPT[i-1,w],v_i+OPT[i-1,w-w_i]\}

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>22</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>28</td>
<td>7</td>
</tr>
</tbody>
</table>

W = 11
Knapsack Problem: Running Time

Running time. \(\Theta(n W) \).
- \textit{Not} polynomial in input size!
- "Pseudo-polynomial."
- Knapsack is NP-hard. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial time algorithm that produces a feasible solution that has value within 0.01% (or any other desired factor) of optimum. [Section 11.8]