CSE 421: Intro Algorithms

Dynamic Programming, I
Intro: Fibonacci & Stamps

W. L. Ruzzo
Dynamic Programming

Outline:

General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 Weighted interval scheduling
 String Alignment
 RNA Structure prediction
Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
 e.g. closest pair in TSP search
Usually simple, fast if they work (but often don’t)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm
Some Algorithm Design Techniques, III: DP

Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Useful when the same sub-problems show up repeatedly in the solution

Often very robust to problem re-definition

Sometimes gives exponential speedups
“Dynamic Programming”

Program – A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
“it’s impossible to use dynamic in a pejorative sense”
“something not even a Congressman could object to”

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

\[0 \ 1 \ 1 \ 2 \ 3 \ 5 \ 8 \ 13 \ 21 \ 34 \ 55 \ 89 \ 144 \ 233 \ \ldots\]

Recursive algorithm:

\[
\text{Fibo}(n) \\
\quad \text{if } n = 0 \text{ then return}(0) \\
\quad \text{else if } n = 1 \text{ then return}(1) \\
\quad \text{else return} (\text{Fibo}(n-1)+\text{Fibo}(n-2))
\]

Note:

Exponential \uparrow: $F(n) \approx \Phi^n/\sqrt{5}$, $\Phi = (1+\sqrt{5})/2 \approx 1.618\ldots$
many duplicates ⇒ exponential time!
F(n) ≈ \phi^n/\sqrt{5}
Two Alternative Fixes

Memoization ("Caching")

Compute on demand, but don’t re-compute:
 Save answers from all recursive calls
 Before a call, test whether answer saved

Dynamic Programming (not memoized)

Pre-compute, don’t re-compute:
 Recursion become iteration (top-down → bottom-up)
 Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs
Fibonacci - Memoized Version

initialize: \(F[i] \leftarrow \text{undefined for all } i > 1 \)

\(F[0] \leftarrow 0 \)

\(F[1] \leftarrow 1 \)

\(\text{FiboMemo}(n): \)

\[
\begin{align*}
\text{if}(F[n] \text{ undefined}) \{} \\
\quad F[n] & \leftarrow \text{FiboMemo}(n-2)+\text{FiboMemo}(n-1) \\
\text{\}} \\
\text{return}(F[n])
\end{align*}
\]
Fibonacci - Dynamic Programming Version

FiboDP(n):
 F[0] ← 0
 F[1] ← 1
 for i = 2 to n do
 F[i] ← F[i-1] + F[i-2]
 end
 return(F[n])

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed.
Dynamic Programming

Useful when

Same recursive sub-problems occur \textit{repeatedly}
Parameters of these recursive calls \textit{anticipated}
The solution to whole problem can be solved without knowing the \textit{internal} details of how the sub-problems are solved

“principle of optimality” – more below
Example: Making change

Given:
 - Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
 - An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
 - Give as many as possible of the next biggest denomination
Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢ stamps
An amount \(N \)

Problem: choose fewest stamps totaling \(N \)
A Few Ways To Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

for a = 0, …, N {
 for b = 0, …, N {
 for c = 0, …, N {
 if (5a+4b+c == N && a+b+c is new min)
 {retain (a,b,c);}}}
 output retained triple;

Time: $O(N^3)$
(Not too hard to see some optimizations, but we’re after bigger fish…)
Theorem: If last stamp in an opt sol has value \(v \), then previous stamps are opt sol for \(N-v \).

Proof: if not, we could improve the solution for \(N \) by using opt for \(N-v \).

Alg: for \(i = 1 \) to \(n \):

\[
\text{OPT}(i) = \min \begin{cases}
0 & i = 0 \\
1 + \text{OPT}(i-5) & i \geq 5 \\
1 + \text{OPT}(i-4) & i \geq 4 \\
1 + \text{OPT}(i-1) & i \geq 1
\end{cases}
\]

Claim: \(\text{OPT}(i) \) = min number of stamps totaling \(i \cdot \phi \)

Pf: induction on \(i \).
New Idea: Recursion

\[OPT(i) = \min \begin{cases} 0 & i=0 \\ 1+OPT(i-5) & i\geq5 \\ 1+OPT(i-4) & i\geq4 \\ 1+OPT(i-1) & i\geq1 \end{cases} \]

Time: \(> 3^{N/5} \)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up (better):

for $i = 0, \ldots, N$ do

$$\text{OPT}[i] = \min \begin{cases} 0 & i=0 \\ 1+\text{OPT}[i-5] & i\geq 5 \\ 1+\text{OPT}[i-4] & i\geq 4 \\ 1+\text{OPT}[i-1] & i\geq 1 \end{cases}$$

Time: $O(N)$
Finding *How Many* Stamps

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + \text{Min}(3, 1, 3) = 2

\[
\text{OPT}[i] = \min \begin{cases}
0 & i=0 \\
1 + \text{OPT}[i-5] & i \geq 5 \\
1 + \text{OPT}[i-4] & i \geq 4 \\
1 + \text{OPT}[i-1] & i \geq 1
\end{cases}
\]
Finding Which Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[1 + \text{Min}(3,1,3) = 2 \]

\[
\text{OPT}[i] = \min \begin{cases}
0 & \text{i=0} \\
1 + \text{OPT}[i-5] & \text{i\geq5} \\
1 + \text{OPT}[i-4] & \text{i\geq4} \\
1 + \text{OPT}[i-1] & \text{i\geq1}
\end{cases}
\]
Trace-Back

Way 1: tabulate all

add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

\[
\text{TraceBack}(i) : \\
\text{if } i = 0 \text{ then return; } \\
\text{for } d \text{ in } \{1, 4, 5\} \text{ do } \\
\hspace{1cm} \text{if } \text{OPT}[i] = 1 + \text{OPT}[i - d] \\
\hspace{1cm} \text{then break; } \\
\text{print } d; \\
\text{TraceBack}(i - d);
\]

\[
\text{OPT}[i] = \min \left\{ \begin{array}{ll}
0 & i = 0 \\
1 + \text{OPT}[i-5] & i \geq 5 \\
1 + \text{OPT}[i-4] & i \geq 4 \\
1 + \text{OPT}[i-1] & i \geq 1
\end{array} \right\}
\]
Complexity Note

O(N) is better than O(N^3) or O(3^{N/5})

But still *exponential* in input size (log N bits)

(E.g., miserable if N is 64 bits – c\cdot2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general (i.e., when denominations and total are both part of the input). See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
 Optimal solution contains optimal subproblems
 A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
 The same subproblems arise in various ways