Huffman Codes:
An Optimal Data Compression Method
Compression Example

100k file, 6 letter alphabet:

File Size:
- ASCII, 8 bits/char: 800kbits
- $2^3 > 6$; 3 bits/char: 300kbits

Why?
- Storage, transmission vs 5 Ghz cpu
Compression Example

100k file, 6 letter alphabet:

File Size:
- ASCII, 8 bits/char: 800kbits
- $2^3 > 6$; 3 bits/char: 300kbits

better:
- 2.52 bits/char $74\% \times 2 + 26\% \times 4$: 252kbits

Optimal?

E.g.: Why not:
- a 00 00
- b 01 01
- d 10 10
- c 1100 110
- e 1101 1101
- f 1110 1110

1101110 = cf or ec?
Data Compression

Binary character code ("code")

- each k-bit source string maps to unique code word
 (e.g. k=8)
- "compression" alg: concatenate code words for
 successive k-bit "characters" of source

Fixed/variable length codes

- all code words equal length?

Prefix codes

- no code word is prefix of another (unique decoding)
Prefix Codes = Trees

- a: 45%
- b: 13%
- c: 12%
- d: 16%
- e: 9%
- f: 5%
Greedy Idea #1

Put **most** frequent
under root, then recurse …
Greedy Idea #1

Top down: Put *most frequent* under root, then recurse.

Too greedy: unbalanced tree

\[0.45 \times 1 + 0.16 \times 2 + 0.13 \times 3 \ldots = 2.34\]

Not too bad, but imagine if all freqs were \(~1/6\):

\[(1+2+3+4+5+5)/6=3.33\]
Greedy Idea #2

Top down: Divide letters into 2 groups, with ~50% weight in each; recurse (Shannon-Fano code)

Again, not terrible
2*.5+3*.5 = 2.5

But this tree can easily be improved! (How?)
Greedy idea #3

Bottom up: Group least frequent letters near bottom

- a: 45%
- b: 13%
- c: 12%
- d: 16%
- e: 9%
- f: 5%
.45*1 + .41*3 + .14*4 = 2.24 bits per char
Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq
while queue length > 1 do
 remove smallest 2; call them x, y
 make new node z from them, with f(z) = f(x) + f(y)
 insert z into queue

Analysis: \(O(n) \) heap ops: \(O(n \log n) \)

Goal: Minimize \(B(T) = \sum_{c \in C} \text{freq}(c) \times \text{depth}(c) \) \(T = \text{Tree} \)
\(C = \text{alphabet} \)

Correctness: ???
Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.

Instead, show that greedy’s solution is as good as any.

How: an exchange argument
Defn: A pair of leaves x, y is an inversion if
\[\text{depth}(x) \geq \text{depth}(y) \]
and
\[\text{freq}(x) \geq \text{freq}(y) \]

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

\[
\text{before} \quad (d(x) \times f(x) + d(y) \times f(y)) - (d(x) \times f(y) + d(y) \times f(x)) = \\
\text{after} \quad (d(x) - d(y)) \times (f(x) - f(y)) \geq 0
\]

I.e., non-negative cost savings.
Lemma 1:
“Greedy Choice Property”

The 2 least frequent letters might as well be siblings

Let a be least freq, b 2nd
Let u, v be siblings at max depth, f(u) ≤ f(v) (why must they exist?)
Then (a,u) and (b,v) are inversions. Swap them.

Why Important? Algorithm is not wrong to join them.
Let \((C, f)\) be a problem instance: \(C\) an \(n\)-letter alphabet with letter frequencies \(f(c)\) for \(c\) in \(C\).

For any \(x, y\) in \(C\), \(z\) not in \(C\), let \(C'\) be the \((n-1)\) letter alphabet \(C - \{x,y\} \cup \{z\}\) and for all \(c\) in \(C'\) define

\[
f'(c) = \begin{cases}
 f(c), & \text{if } c \neq x, y, z \\
 f(x) + f(y), & \text{if } c = z
\end{cases}
\]

Let \(T'\) be an optimal tree for \((C', f')\).

Then

\[T' = \begin{array}{c} T' \\
\end{array} \begin{array}{c} T \\
\end{array} \]

is optimal for \((C, f)\) among all trees having \(x,y\) as siblings.

Why Important? Algorithm is not wrong to treat \(x:y\) as \(z\).
Proof:

\[B(T) = \sum_{c \in C} d_T(c) \cdot f(c) \]

\[B(T) - B(T') = d_T(x) \cdot (f(x) + f(y)) - d_{T'}(z) \cdot f'(z) \]

\[= (d_{T'}(z) + 1) \cdot f'(z) - d_{T'}(z) \cdot f'(z) \]

\[= f'(z) \]

Suppose \(\hat{T} \) (having \(x \) & \(y \) as siblings) is better than \(T \), i.e.

\[B(\hat{T}) < B(T) \]. Collapse \(x \) & \(y \) to \(z \), forming \(\hat{T}' \); as above:

\[B(\hat{T}) - B(\hat{T}') = f'(z) \]

Then:

\[B(\hat{T'}) = B(\hat{T}) - f'(z) < B(T) - f'(z) = B(T') \]

Contradicting optimality of \(T' \)
Theorem: Huffman gives optimal codes

Proof: induction on $|C|$

Basis: $n=1,2$ – immediate

Induction: $n>2$

Let x, y be least frequent

Form $C', f', \& z$, as above

By induction, T' is opt for (C', f')

By lemma 2, $T' \rightarrow T$ is opt for (C, f) among trees with x, y as siblings

By lemma 1, some opt tree has x, y as siblings

Therefore, T is optimal.
Data Compression

Huffman is optimal.

BUT still might do better!

Huffman encodes fixed length blocks. What if we vary them?

Huffman uses one encoding throughout a file. What if characteristics change?

What if data has structure? E.g. raster images, video,…

Huffman is lossless. Necessary?

LZW, MPEG, …