Dynamic Programming, I
Intro: Fibonacci & Stamps

W. L. Ruzzo
Dynamic Programming

Outline:

General Principles

Easy Examples – Fibonacci, Licking Stamps

Meatier examples

Weighted interval scheduling

String Alignment

RNA Structure prediction

Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

- Usually builds something a piece at a time
- Repeatedly make the greedy choice - the one that looks the best right away
 - e.g. closest pair in TSP search
- Usually simple, fast if they work (but often don’t)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm
Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Useful when the same sub-problems show up repeatedly in the solution

Often very robust to problem re-definition

Sometimes gives exponential speedups
“Dynamic Programming”

Program – A plan or procedure for dealing with some matter

– Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.
Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
“it’s impossible to use dynamic in a pejorative sense”
“something not even a Congressman could object to”

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

Recursive algorithm:

```
Fibo(n)
    if n = 0 then return(0)
    else if n = 1 then return(1)
    else return(Fibo(n-1)+Fibo(n-2))
```
Call tree - start
Full call tree

many duplicates ⇒ exponential time!
Two Alternative Fixes

Memoization (“Caching”)
Compute on demand, but don’t re-compute:
 Save answers from all recursive calls
 Before a call, test whether answer saved

Dynamic Programming (not memoized)
Pre-compute, don’t re-compute:
 Recursion become iteration (top-down → bottom-up)
 Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structures
Fibonacci - Memoized Version

initialize: F[i] ← undefined for all i > 1

F[0] ← 0
F[1] ← 1

FiboMemo(n):
 if(F[n] undefined) {
 F[n] ← FiboMemo(n-2)+FiboMemo(n-1)
 }

 return(F[n])
Fibonacci - Dynamic Programming Version

FiboDP(n):
 F[0] ← 0
 F[1] ← 1
 for i = 2 to n do
 F[i] ← F[i-1]+F[i-2]
 end
 return(F[n])

For this problem, suffices to keep only last 2 entries instead of full array, but about the same speed
Dynamic Programming

Useful when

Same recursive sub-problems occur *repeatedly*
Parameters of these recursive calls anticipated
The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved

“principle of optimality” – more below
Example: Making change

Given:
- Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
- An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
- Give as many as possible of the next biggest denomination
Licking Stamps

Given:

- Large supply of 5¢, 4¢, and 1¢ stamps
- An amount N

Problem: choose fewest stamps totaling N
A Few Ways To Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

for \(a = 0, \ldots, N \) {
 for \(b = 0, \ldots, N \) {
 for \(c = 0, \ldots, N \) {
 if \(5a+4b+c = N \) && \(a+b+c \) is new min
 {retain \((a,b,c) \);}}}
 output retained triple;
}

Time: \(O(N^3) \)
(Not too hard to see some optimizations, but we’re after bigger fish…)
Better Idea

Theorem: If last stamp in an opt sol has value v, then previous stamps are *opt sol for $N-v$.*

Proof: if not, we could improve the solution for N by using opt for $N-v$.

Alg: for $i = 1$ to n:

\[
OPT(i) = \begin{cases}
0 & i=0 \\
1+OPT(i-5) & i \geq 5 \\
1+OPT(i-4) & i \geq 4 \\
1+OPT(i-1) & i \geq 1
\end{cases}
\]

Claim: $OPT(i) = \min$ number of stamps totaling $i\phi$

Pf: induction on i.

19
New Idea: Recursion

\[OPT(i) = \min \begin{cases} 0 & i = 0 \\ 1 + OPT(i - 5) & i \geq 5 \\ 1 + OPT(i - 4) & i \geq 4 \\ 1 + OPT(i - 1) & i \geq 1 \end{cases} \]

Time: \(> 3^{N/5} \)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up (better):

\[
\text{for } i = 0, \ldots, N \text{ do}
\]

\[
\text{OPT}(i) = \min \begin{cases}
0 & i=0 \\
1+\text{OPT}(i-5) & i \geq 5 \\
1+\text{OPT}(i-4) & i \geq 4 \\
1+\text{OPT}(i-1) & i \geq 1
\end{cases}
\]

Time: \(O(N)\)
Finding *How Many* Stamps

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 + \text{Min}(3, 1, 3) = 2
Finding *Which* Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\mathbf{1} + \min(3, \mathbf{1}, 3) = 2 \]
Trace-Back

Way 1: tabulate all
 add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

TraceBack(i):
 if i == 0 then return;
 for d in {1, 4, 5} do
 if OPT[i] == 1 + OPT[i - d]
 then break;
 print d;
 TraceBack(i - d);

\[
OPT(i) = \min \begin{cases}
0 & i = 0 \\
1 + OPT(i-5) & i \geq 5 \\
1 + OPT(i-4) & i \geq 4 \\
1 + OPT(i-1) & i \geq 1
\end{cases}
\]
Complexity Note

O(N) is better than O(N^3) or O(3^{N/5})

But still *exponential* in input size (log N bits)

(E.g., miserable if N is 64 bits – c\cdot2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general. See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways