Solutions are posted (UW netid required)
See grades via Catalyst/your “MyUW” page
Comments from Cyrus in Catalyst Dropbox
Papers …

Everyone did well…
… except #5
If \(p(n) \) is a degree \(d \) polynomial with high-order coefficient \(> 0 \), then \(p(n) = \Omega(n^d) \)

\[
p(n) = \sum_{i=0}^{d} a_i n^i
\]

\[
\geq a_d n^d - \sum_{i=0}^{d-1} |a_i| n^i
\]

\[
\geq a_d n^d - \sum_{i=0}^{d-1} |a_i| n^{d-1}
\]

\[
= \left(a_d - \left(\sum_{i=0}^{d-1} |a_i| / n \right) \right) n^d
\]

\[
\geq \left(a_d / 2 \right) n^d
\]

\[
n \geq \max \left(1, 2 \left(\sum_{i=1}^{d-1} |a_i| / a_d \right) \right)
\]
CSE 421
Algorithms

Huffman Codes:
An Optimal Data Compression Method
Compression Example

100k file, 6 letter alphabet:

File Size:
 ASCII, 8 bits/char: 800kbits
 $2^3 > 6$; 3 bits/char: 300kbits

Why?
 Storage, transmission vs 5 Ghz cpu
Compression Example

100k file, 6 letter alphabet:

File Size:
- ASCII, 8 bits/char: 800kbits
- $2^3 > 6$; 3 bits/char: 300kbits
- better: 2.52 bits/char \(74\% \times 2 + 26\% \times 4\): 252kbits
- Optimal?

E.g.:
- Why not:
 - a 00 00
 - b 01 01
 - d 10 10
 - c 1100 110
 - e 1101 1101
 - f 1110 1110

\[1101110 = \text{cf or ec?}\]
Data Compression

Binary character code ("code")
 each k-bit source string maps to unique code word (e.g. k=8)
 "compression" alg: concatenate code words for successive k-bit "characters" of source

Fixed/variable length codes
 all code words equal length?

Prefix codes
 no code word is prefix of another (unique decoding)
Prefix Codes = Trees

```
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45%</td>
</tr>
<tr>
<td>b</td>
<td>13%</td>
</tr>
<tr>
<td>c</td>
<td>12%</td>
</tr>
<tr>
<td>d</td>
<td>16%</td>
</tr>
<tr>
<td>e</td>
<td>9%</td>
</tr>
<tr>
<td>f</td>
<td>5%</td>
</tr>
</tbody>
</table>
```

1 0 1 0 0 0 0 0 1

1 1 0 0 0 1 0 1
Greedy Idea #1

Put most frequent under root, then recurse …
Greedy Idea #1

Top down: Put most frequent under root, then recurse

Too greedy: unbalanced tree

\[0.45 \times 1 + 0.16 \times 2 + 0.13 \times 3 \ldots = 2.34\]

not too bad, but imagine if all freqs were \(\sim 1/6\):

\[\frac{(1+2+3+4+5+5)}{6}=3.33\]
Greedy Idea #2

Top down: Divide letters into 2 groups, with ~50% weight in each; recurse (Shannon-Fano code)

Again, not terrible
2*.5+3*.5 = 2.5

But this tree can easily be improved! (How?)
Greedy idea #3

Bottom up: Group *least* frequent letters near bottom
.45*1 + .41*3 + .14*4 = 2.24 bits per char
Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq
while queue length > 1 do
 remove smallest 2; call them x, y
 make new node z from them, with f(z) = f(x) + f(y)
 insert z into queue

Analysis: \(O(n) \) heap ops: \(O(n \log n) \)

Goal: Minimize \(B(T) = \sum_{c \in C} \text{freq}(c) \times \text{depth}(c) \)

Correctness: ???
Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.

Instead, show that greedy’s solution is as good as any.

How: an exchange argument
Defn: A pair of leaves is an inversion if
\[\text{depth}(x) \geq \text{depth}(y) \]
and
\[\text{freq}(x) \geq \text{freq}(y) \]

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

\[
\begin{align*}
& (\text{d}(x)\ast\text{f}(x) + \text{d}(y)\ast\text{f}(y)) - (\text{d}(x)\ast\text{f}(y) + \text{d}(y)\ast\text{f}(x)) = \\
& (\text{d}(x) - \text{d}(y)) \ast (\text{f}(x) - \text{f}(y)) \geq 0
\end{align*}
\]

I.e., non-negative cost savings.
Lemma 1:
“Greedy Choice Property”

The 2 least frequent letters might as well be siblings

Let a be least freq, b 2nd
Let u, v be siblings at max depth, f(u) ≤ f(v) (why must they exist?)
Then (a,u) and (b,v) are inversions. Swap them.
Lemma 2

Let \((C, f)\) be a problem instance: \(C\) an \(n\)-letter alphabet with letter frequencies \(f(c)\) for \(c\) in \(C\).

For any \(x, y\) in \(C\), \(z\) not in \(C\), let \(C'\) be the \((n-1)\) letter alphabet \(C - \{x,y\} \cup \{z\}\) and for all \(c\) in \(C'\) define

\[
f'(c) = \begin{cases}
 f(c), & \text{if } c \neq x, y, z \\
 f(x) + f(y), & \text{if } c = z
\end{cases}
\]

Let \(T'\) be an optimal tree for \((C', f')\).

Then \(T\) is optimal for \((C, f)\) among all trees having \(x, y\) as siblings.

![Diagram](image-url)
Proof:

\[B(T) = \sum_{c \in C} d_T(c) \cdot f(c) \]

\[B(T) - B(T') = d_T(x) \cdot (f(x) + f(y)) - d_{T'}(z) \cdot f'(z) \]

\[= (d_{T'}(z) + 1) \cdot f'(z) - d_{T'}(z) \cdot f'(z) \]

\[= f'(z) \]

Suppose \(\hat{T} \) (having \(x \) & \(y \) as siblings) is better than \(T \), i.e.

\[B(\hat{T}) < B(T). \]

Collapse \(x \) & \(y \) to \(z \), forming \(\hat{T}' \); as above:

\[B(\hat{T}) - B(\hat{T}') = f'(z) \]

Then:

\[B(\hat{T}') = B(\hat{T}) - f'(z) < B(T) - f'(z) = B(T') \]

Contradicting optimality of \(T' \)
Theorem: Huffman gives optimal codes

Proof: induction on |C|

Basis: n=1,2 – immediate

Induction: n>2

Let x,y be least frequent

Form C’, f’, & z, as above

By induction, T’ is opt for (C’,f’)

By lemma 2, T’ → T is opt for (C,f) among trees with x,y as siblings

By lemma 1, some opt tree has x,y as siblings

Therefore, T is optimal.
Data Compression

Huffman is optimal.

BUT still might do better!

- Huffman encodes fixed length blocks. What if we vary them?
- Huffman uses one encoding throughout a file. What if characteristics change?
- What if data has structure? E.g. raster images, video,…
- Huffman is lossless. Necessary?

LZW, MPEG, …
David A. Huffman, 1925-1999