CSE 421: Intro Algorithms

Winter 2012
W. L. Ruzzo
Dynamic Programming, I
Intro: Fibonacci & Stamps
Dynamic Programming

Outline:

General Principles
Easy Examples – Fibonacci, Licking Stamps
Meatier examples
 Weighted interval scheduling
 String Alignment
 RNA Structure prediction
 Maybe others
Some Algorithm Design Techniques, I: Greedy

Greedy algorithms

Usually builds something a piece at a time
Repeatedly make the greedy choice - the one that looks the best right away
e.g. closest pair in TSP search

Usually simple, fast if they work (but often don't)
Some Algorithm Design Techniques, II: D & C

Divide & Conquer

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution.

Typically, sub-problems are disjoint, and at most a constant fraction of the size of the original.

e.g. Mergesort, Quicksort, Binary Search, Karatsuba

Typically, speeds up a polynomial time algorithm.
Some Algorithm Design Techniques, III: DP

Dynamic Programming

Reduce problem to one or more sub-problems of the same type, i.e., a recursive solution

Useful when the same sub-problems show up repeatedly in the solution

Sometimes gives exponential speedups
“Dynamic Programming”

Program — A plan or procedure for dealing with some matter

— Webster’s New World Dictionary
Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

A very simple case: Computing Fibonacci Numbers

Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$

Recursive algorithm:

Fibo(n)
 if n=0 then return(0)
 else if n=1 then return(1)
 else return(Fibo(n-1)+Fibo(n-2))
Call tree - start

F (6)

F (5)

F (4)

F (3)

F (2)

F (1)

F (0)
Full call tree

many duplicates \Rightarrow exponential time!
Two Alternative Fixes

Memoization ("Caching")

Compute on demand, but don’t re-compute:
 Save answers from all recursive calls
 Before a call, test whether answer saved

Dynamic Programming (not memoized)

Pre-compute, don’t re-compute:
 Recursion become iteration (top-down → bottom-up)
 Anticipate and pre-compute needed values

DP usually cleaner, faster, simpler data structs
Fibonacci - Memoized Version

initialize: $F[i] \leftarrow$ undefined for all $i > 1$

$F[0] \leftarrow 0$

$F[1] \leftarrow 1$

$Fib\text{Memo}(n)$:

\[
\begin{array}{l}
\text{if}(F[n] \text{ undefined}) \{ \\
\quad F[n] \leftarrow Fib\text{Memo}(n-2)+Fib\text{Memo}(n-1) \\
\} \\
\text{return}(F[n])
\end{array}
\]
Fibonacci - Dynamic Programming Version

FiboDP(n):
 F[0] ← \(0\)
 F[1] ← \(1\)
 for \(i=2\) to \(n\) do
 F[i] ← F[i-1] + F[i-2]
 end
 return(F[n])

For this problem, keeping only last 2 entries instead of full array suffices, but about the same speed.
Dynamic Programming

Useful when

- Same recursive sub-problems occur repeatedly
- Parameters of these recursive calls anticipated
- The solution to whole problem can be solved without knowing the *internal* details of how the sub-problems are solved
 - “principle of optimality” – more below
Making change

Given:
Large supply of 1¢, 5¢, 10¢, 25¢, 50¢ coins
An amount N

Problem: choose fewest coins totaling N

Cashier’s (greedy) algorithm works:
Give as many as possible of the next biggest denomination
Licking Stamps

Given:

Large supply of 5¢, 4¢, and 1¢ stamps
An amount N

Problem: choose fewest stamps totaling N
How to Lick 27¢

<table>
<thead>
<tr>
<th># of 5¢ stamps</th>
<th># of 4¢ stamps</th>
<th># of 1¢ stamps</th>
<th>total number</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Morals: Greed doesn’t pay; success of “cashier’s alg” depends on coin denominations
A Simple Algorithm

At most N stamps needed, etc.

```plaintext
for a = 0, …, N {
    for b = 0, …, N {
        for c = 0, …, N {
            if (5a+4b+c == N && a+b+c is new min) {
                retain (a,b,c);
            }
        }
    }
    output retained triple;
}
```

Time: $O(N^3)$
(Not too hard to see some optimizations, but we’re after bigger fish…)
Better Idea

Theorem: If last stamp in an opt sol has value \(v \), then previous stamps are opt sol for \(N-v \).

Proof: if not, we could improve the solution for \(N \) by using opt for \(N-v \).

Alg: for \(i = 1 \) to \(n \):

\[
M(i) = \min\left\{ \begin{array}{ll}
0 & i = 0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{array} \right.
\]

where \(M(i) = \min \) number of stamps totaling \(i \).
New Idea: Recursion

\[M(i) = \min \left\{ \begin{array}{ll}
0 & i=0 \\
1 + M(i-5) & i \geq 5 \\
1 + M(i-4) & i \geq 4 \\
1 + M(i-1) & i \geq 1
\end{array} \right\} \]

Time: \(> 3^{N/5} \)
Another New Idea: Avoid Recomputation

Tabulate values of solved subproblems

Top-down: “memoization”

Bottom up (better):

for i = 0, …, N do $M[i] = \min \begin{cases} 0 & i=0 \\ 1+M[i−5] & i≥5 \\ 1+M[i−4] & i≥4 \\ 1+M[i−1] & i≥1 \end{cases}$

Time: $O(N)$
Finding *How Many Stamps*

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[1 + \text{Min}(3, 1, 3) = 2\]
Finding *Which* Stamps: Trace-Back

<table>
<thead>
<tr>
<th>i</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>M(i)</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[1 + \min(3, 1, 3) = 2 \]
Trace-Back

Way 1: tabulate all
 add data structure storing back-pointers indicating which predecessor gave the min. (more space, maybe less time)

Way 2: re-compute just what’s needed

TraceBack(i):
 if i == 0 then return;
 for d in {1, 4, 5} do
 if M[i] == 1 + M[i - d] then break;
 print d;
 TraceBack(i - d);

\[
M[i] = \min \begin{cases}
0 & i = 0 \\
1 + M[i-5] & i \geq 5 \\
1 + M[i-4] & i \geq 4 \\
1 + M[i-1] & i \geq 1
\end{cases}
\]
Complexity Note

O(N) is better than O(N^3) or O(3^{N/5})

But still *exponential* in input size (log N bits)

(E.g., miserable if N is 64 bits – c\cdot2^{64} steps & 2^{64} memory.)

Note: can do in O(1) for fixed denominations, e.g., 5¢, 4¢, and 1¢ (how?) but not in general. See “NP-Completeness” later.
Elements of Dynamic Programming

What feature did we use?
What should we look for to use again?

“Optimal Substructure”
Optimal solution contains optimal subproblems
A non-example: min (number of stamps mod 2)

“Repeated Subproblems”
The same subproblems arise in various ways