CSE 421
Algorithms

Huffman Codes:
An Optimal Data Compression Method
Compression Example

100k file, 6 letter alphabet:

File Size:
 ASCII, 8 bits/char: 800kbits
 $2^3 > 6$; 3 bits/char: 300kbits

Why?
 Storage, transmission vs 5 Ghz cpu
Compression Example

100k file, 6 letter alphabet:

File Size:

- ASCII, 8 bits/char: 800kbits
- $2^3 > 6$; 3 bits/char: 300kbits
- better: 2.52 bits/char $74\% \times 2 + 26\% \times 4$: 252kbits

Optimal?

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
<th>Code</th>
<th>Why not:</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45%</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>b</td>
<td>13%</td>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>c</td>
<td>12%</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>d</td>
<td>16%</td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>e</td>
<td>9%</td>
<td>1101</td>
<td>1101</td>
</tr>
<tr>
<td>f</td>
<td>5%</td>
<td>1110</td>
<td>1110</td>
</tr>
</tbody>
</table>

1101110 = cf or ec?
Data Compression

Binary character code ("code")
- each k-bit source string maps to unique code word (e.g. k=8)
- "compression" alg: concatenate code words for successive k-bit "characters" of source

Fixed/variable length codes
- all code words equal length?

Prefix codes
- no code word is prefix of another (unique decoding)
Prefix Codes = Trees

```
1 0 1 0 0 0 0 0 1
f a b
```

```
1 1 0 0 0 1 0 1
f a b
```
Greedy Idea #1

Put **most** frequent
under root, then recurse …
Greedy Idea #1

Top down: Put most frequent under root, then recurse

Too greedy: unbalanced tree

\[0.45 \times 1 + 0.16 \times 2 + 0.13 \times 3 \ldots = 2.34 \]

not too bad, but imagine if all freqs were \(\sim 1/6 \):

\[(1+2+3+4+5+5)/6 = 3.33 \]
Greedy Idea #2

Top down: Divide letters into 2 groups, with ~50% weight in each; recurse (Shannon-Fano code)

Again, not terrible

2*.5 + 3*.5 = 2.5

But this tree can easily be improved! (How?)
Greedy idea #3

Bottom up: Group *least* frequent letters near bottom

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45%</td>
</tr>
<tr>
<td>b</td>
<td>13%</td>
</tr>
<tr>
<td>c</td>
<td>12%</td>
</tr>
<tr>
<td>d</td>
<td>16%</td>
</tr>
<tr>
<td>e</td>
<td>9%</td>
</tr>
<tr>
<td>f</td>
<td>5%</td>
</tr>
</tbody>
</table>
\[0.45 \times 1 + 0.41 \times 3 + 0.14 \times 4 = 2.24 \text{ bits per char}\]
Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq
while queue length > 1 do
 remove smallest 2; call them x, y
 make new node z from them, with f(z) = f(x) + f(y)
 insert z into queue

Analysis: O(n) heap ops: O(n log n)

Goal: Minimize \(B(T) = \sum_{c \in C} \text{freq}(c) \times \text{depth}(c) \)

Correctness: ???
Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.

Instead, show that greedy’s solution is as good as any.

How: an exchange argument
Defn: A pair of leaves is an inversion if

\[\text{depth}(x) \geq \text{depth}(y) \]

and

\[\text{freq}(x) \geq \text{freq}(y) \]

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

before

after

\[
(d(x)*f(x) + d(y)*f(y)) - (d(x)*f(y) + d(y)*f(x)) =
\]

\[
(d(x) - d(y)) * (f(x) - f(y)) \geq 0
\]

I.e., non-negative cost savings.
Lemma 1:
“Greedy Choice Property”

The 2 least frequent letters might as well be siblings at deepest level.

Let a be least freq, b 2nd
Let u, v be siblings at max depth, f(u) ≤ f(v) (why must they exist?)
Then (a,u) and (b,v) are inversions. Swap them.
Let (C, f) be a problem instance: C an n-letter alphabet with letter frequencies f(c) for c in C.

For any x, y in C, let C' be the (n-1) letter alphabet C - {x,y} ∪ {z} and for all c in C' define

\[
f'(c) = \begin{cases}
 f(c), & \text{if } c \neq x, y, z \\
 f(x) + f(y), & \text{if } c = z
\end{cases}
\]

Let T' be an optimal tree for (C',f').

Then

\[
T' = \text{is optimal for } (C,f) \text{ among all trees having } x,y \text{ as siblings}
\]
Proof:

\[B(T) = \sum_{c \in C} d_T(c) \cdot f(c) \]

\[B(T) - B(T') = d_T(x) \cdot (f(x) + f(y)) - d_{T'}(z) \cdot f'(z) \]
\[= (d_{T'}(z) + 1) \cdot f'(z) - d_{T'}(z) \cdot f'(z) \]
\[= f'(z) \]

Suppose \(\hat{T} \) (having \(x \) & \(y \) as siblings) is better than \(T \), i.e.

\[B(\hat{T}) < B(T). \] Collapse \(x \) & \(y \) to \(z \), forming \(\hat{T}' \); as above:

\[B(\hat{T}) - B(\hat{T}') = f'(z) \]

Then:

\[B(\hat{T}') = B(\hat{T}) - f'(z) < B(T) - f'(z) = B(T') \]

Contradicting optimality of \(T' \)
Theorem: Huffman gives optimal codes

Proof: induction on |C|

Basis: n=1,2 – immediate

Induction: n>2

Let x,y be least frequent

Form C´, f´, & z, as above

By induction, T´ is opt for (C´,f´)

By lemma 2, T´ → T is opt for (C,f) among trees with x,y as siblings

By lemma 1, some opt tree has x, y as siblings

Therefore, T is optimal.
Data Compression

Huffman is **optimal**.

BUT still might do better!

Huffman encodes fixed length blocks. What if we vary them?

Huffman uses one encoding throughout a file. What if characteristics change?

What if data has structure? E.g. raster images, video,…

Huffman is lossless. Necessary?

LZW, MPEG, …
David A. Huffman, 1925-1999