Matching Residents to Hospitals

- **Goal**: Given a set of preferences among hospitals and medical school residents (graduating medical students), design a self-reinforcing admissions process.

- **Unstable pair**: applicant x and hospital y are unstable if:
 - x prefers y to their assigned hospital.
 - y prefers x to one of its admitted residents.

- **Stable assignment**: Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital side deal from being made.

Simpler: Stable Matching Problem

- **Goal**: Given n men and n women, find a "suitable" matching.
 - Participants rate members of opposite sex.
 - Each man lists women in order of preference from best to worst.
 - Each woman lists men in order of preference from best to worst.

- **Perfect matching**: everyone is matched monogamously.
 - Each man gets exactly one woman.
 - Each woman gets exactly one man.

- **Stability**: no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair $m-w$ is unstable if man m and woman w prefer each other to current partners.
 - Unstable pair $m-w$ could each improve by eloping.

- **Stable matching**: perfect matching with no unstable pairs.

- **Stable matching problem**: Given the preference lists of n men and n women, find a stable matching if one exists.
Stable Matching Problem

Q. Is assignment X-C, Y-B, Z-A stable?
A. No. Brenda and Xavier will hook up.

Men's Preference Profile

Women's Preference Profile

Stable Matching Problem

Q. Is assignment X-A, Y-B, Z-C stable?
A. Yes.

Men's Preference Profile

Women's Preference Profile

Stable Roommate Problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.
- 2n people; each person ranks others from 1 to 2n-1.
- Assign roommate pairs so that no unstable pairs.

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>B</td>
<td>C</td>
<td>A</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

A-B, C-D ⇒ B-C unstable
A-C, B-D ⇒ A-B unstable
A-D, B-C ⇒ A-C unstable

Observation. Stable matchings do not always exist for stable roommate problem.
Propose-And-Reject Algorithm

- Propose-and-reject algorithm. [Gale-Shapley 1962]
 Intuitive method that guarantees to find a stable matching.

Initialize each person to be free.
while (some man is free and hasn’t proposed to every woman) {
 Choose such a man \(m \) with \(w = 1^{st} \) woman on \(m \)'s list to whom \(m \) has not yet proposed
 if (\(w \) is free) assign \(m \) and \(w \) to be engaged
 else if (\(w \) prefers \(m \) to her fiancé \(m' \)) assign \(m \) and \(w \) to be engaged, and \(m' \) to be free
 else \(w \) rejects \(m \)
}

Proof of Correctness: Termination

- Observation 1. Men propose to women in decreasing order of preference.
- Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."
- Claim. Algorithm terminates after at most \(n^2 \) iterations of while loop.
- Proof. Each time through the while loop a man proposes to a new woman. There are only \(n^2 \) possible proposals.

Proof of Correctness: Perfection

- Claim. All men and women get matched.
- Proof. (by contradiction)
 - Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
 - Then some woman, say Amy, is not matched upon termination.
 - By Observation 2 (only trading up, never becoming unmatched), Amy was never proposed to.
 - But, Zoran proposes to everyone, since he ends up unmatched.

Proof of Correctness: Stability

- Claim. No unstable pairs.
- Proof. (by contradiction)
 - Suppose A-Z is an unstable pair: each prefers each other to partner in Gale-Shapley matching \(S^* \).
 - Case 1: Z never proposed to A.
 - \(Z \) prefers his GS partner to A.
 - A-Z is stable.
 - Case 2: Z proposed to A.
 - A rejected Z (right away or later)
 - A prefers her GS partner to Z.
 - A-Z is stable.

 In either case A-Z is stable, a contradiction.
Summary

- **Stable matching problem.** Given \(n \) men and \(n \) women, and their preferences, find a stable matching if one exists.

- **Gale-Shapley algorithm.** Guarantees to find a stable matching for any problem instance.

- **Q.** How to implement GS algorithm efficiently?

- **Q.** If there are multiple stable matchings, which one does GS find?

Implementation for Stable Matching Algorithms

- **Problem size**
 - \(N=2n^2 \) words
 - \(2n \) people each with a preference list of length \(n \)
 - \(2n^2 \log n \) bits
 - specifying an ordering for each preference list takes \(n \log n \) bits

- **Brute force algorithm**
 - Try all \(n! \) possible matchings
 - Do any of them work?

- **Gale-Shapley Algorithm**
 - \(n^2 \) iterations, each costing constant time as follows:

Efficient Implementation

- **Efficient implementation.** We describe \(O(n^2) \) time implementation.

- **Representing men and women.**
 - Assume men are named \(1, \ldots, n \).
 - Assume women are named \(1', \ldots, n' \).

- **Engagements.**
 - Maintain a list of free men, e.g., in a queue.
 - Maintain two arrays \(\text{wife}[m] \) and \(\text{husband}[w] \).
 - set entry to 0 if unmatched
 - if \(m \) matched to \(w \) then \(\text{wife}[m]=w \) and \(\text{husband}[w]=m \)

- **Men proposing.**
 - For each man, maintain a list of women, ordered by preference.
 - Maintain an array \(\text{count}[m] \) that counts the number of proposals made by man \(m \).

Efficient Implementation

- **Women rejecting/accepting.**
 - Does woman \(w \) prefer man \(m \) to man \(m' \)?
 - For each woman, create inverse of preference list of men.
 - Constant time access for each query after \(O(n) \) preprocessing.

<table>
<thead>
<tr>
<th>Amy</th>
<th>Pref</th>
<th>inverse[Pref]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Pref</td>
<td>inverse[Pref]</td>
</tr>
<tr>
<td>Amy</td>
<td>Pref</td>
<td>inverse[Pref]</td>
</tr>
<tr>
<td>Amy</td>
<td>Pref</td>
<td>inverse[Pref]</td>
</tr>
</tbody>
</table>

Understanding the Solution

Q. For a given problem instance, there may be several stable matchings. Do all executions of Gale-Shapley yield the same stable matching? If so, which one?

An instance with two stable matchings.

- A-X, B-Y, C-Z.
- A-Y, B-X, C-Z.

Man Optimality

Claim. GS matching S^* is man-optimal.

Proof. (by contradiction)

- Suppose some man is paired with someone other than his best partner. Men propose in decreasing order of preference → some man is rejected by a valid partner.
- Let Y be the man who is the first such rejection, and let A be the woman who is first valid partner that rejects him.
- Let S be a stable matching where A and Y are matched.
- In building S^*, when Y is rejected, A forms (or reaffirms) engagement with a man, say Z, whom she prefers to Y.
- Let B be Z's partner in S.
- In building S^*, Z is not rejected by any valid partner at the point when Y is rejected by A.
- Thus, Z prefers A to B.
- But A prefers Z to Y.
- Thus $A-Z$ is unstable in S. □

Stable Matching Summary

Stable matching problem. Given preference profiles of n men and n women, find a stable matching.

- Gale-Shapley algorithm. Finds a stable matching in $O(n^2)$ time.

Man-optimality. In version of GS where men propose, each man receives best valid partner.

Q. Does man-optimality come at the expense of the women?
Woman Pessimality

- Woman-pessimal assignment. Each woman receives worst valid partner.
- Claim. GS finds woman-pessimal stable matching S^*.

Proof.
- Suppose A-Z matched in S^*, but Z is not worst valid partner for A.
- There exists stable matching S in which A is paired with a man, say Y, whom she likes less than Z.
- Let B be Z's partner in S.
- Z prefers A to B. Thus, A-Z is an unstable in S. □

Extensions: Matching Residents to Hospitals

- Ex: Men = hospitals, Women = med school residents.
- Variant 1. Some participants declare others as unacceptable.
- Variant 2. Unequal number of men and women.
- Variant 3. Limited polygamy.

Def. Matching S is unstable if there is a hospital h and resident r such that:

<table>
<thead>
<tr>
<th>hospital h</th>
<th>resident r</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. hospital X wants to hire 3 residents</td>
<td></td>
</tr>
</tbody>
</table>

Application: Matching Residents to Hospitals

- NRMP. (National Resident Matching Program)
 - Pre-dates computer usage.
 - Ides of March, 23,000+ residents.

- Rural hospital dilemma.
 - Certain hospitals (mainly in rural areas) were unpopular and declared unacceptable by many residents.
 - Rural hospitals were under-subscribed in NRMP matching.
 - How can we find stable matching that benefits "rural hospitals"?

- Rural Hospital Theorem. Rural hospitals get exactly same residents in every stable matching!

- Note: Pre-1995 NRMP favored hospitals (they proposed). Changed in 1995 to favor residents.

Lessons Learned

- Powerful ideas learned in course.
 - Isolate underlying structure of problem.
 - Create useful and efficient algorithms.

- Potentially deep social ramifications.
 [legal disclaimer]
Deceit: Machiavelli Meets Gale-Shapley

- **Q.** Can there be an incentive to misrepresent your preference profile?
 - Assume you know men's propose-and-reject algorithm will be run.
 - Assume that you know the preference profiles of all other participants.
- **Fact.** No, for any man. Yes, for some women. No mechanism can guarantee a stable matching and be cheatproof.

Men's Preference List

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>Yuri</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Zoran</td>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

Women's True Preference Profile

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Y</td>
<td>X</td>
</tr>
<tr>
<td>Brenda</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Claire</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>

Amy Lies

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Y</td>
<td>Z</td>
</tr>
<tr>
<td>Brenda</td>
<td>X</td>
<td>Y</td>
</tr>
<tr>
<td>Claire</td>
<td>X</td>
<td>Y</td>
</tr>
</tbody>
</table>