CSE 421: Introduction to Algorithms

NP-completeness

Paul Beame

Computational Complexity

- Classify problems according to the amount of computational resources used by the best algorithms that solve them

- Recall:
 - worst-case running time of an algorithm
 - \(\text{max} \) # steps algorithm takes on any input of size \(n \)

Relative Complexity of Problems

- Want a notion that allows us to compare the complexity of problems
- Want to be able to make statements of the form

 “If we could solve problem \(B \) in polynomial time then we can solve problem \(A \) in polynomial time”

 “Problem \(B \) is at least as hard as problem \(A \)”

Polynomial Time Reduction

- \(A \leq_T B \) if there is an algorithm for \(A \) using a ‘black box’ (subroutine) that solves \(B \) that
 - Uses only a polynomial number of steps
 - Makes only a polynomial number of calls to a subroutine for \(B \)

 Thus, poly time algorithm for \(B \) implies poly time algorithm for \(A \)
 - Not only is the number of calls polynomial but the size of the inputs on which the calls are made is polynomial!

- If you can prove there is no fast algorithm for \(A \), then that proves there is no fast algorithm for \(B \)
Why the name reduction?

- Weird: it maps an easier problem into a harder one

- Same sense as saying Maxwell reduced the problem of analyzing electricity & magnetism to solving partial differential equations
 - solving partial differential equations in general is a much harder problem than solving E&M problems

A geek joke

- An engineer
 - is placed in a kitchen with an empty kettle on the table and told to boil water; she fills the kettle with water, puts it on the stove, turns on the gas and boils water.
 - she is next confronted with a kettle full of water sitting on the counter and told to boil water; she puts it on the stove, turns on the gas and boils water.

- A mathematician
 - is placed in a kitchen with an empty kettle on the table and told to boil water; he fills the kettle with water, puts it on the stove, turns on the gas and boils water.
 - he is next confronted with a kettle full of water sitting on the counter and told to boil water: he empties the kettle in the sink, places the empty kettle on the table and says, “I’ve reduced this to an already solved problem”.

A Special kind of Polynomial-Time Reduction

- We will always use a restricted form of polynomial-time reduction often called Karp or many-one reduction

- \(A \leq_P B \) if and only if there is an algorithm for \(A \) given a black box solving \(B \) that on input \(x \)
 - Runs for polynomial time computing an input \(f(x) \)
 - Makes one call to the black box for \(B \)
 - Returns the answer that the black box gave

We say that the function \(f \) is the reduction

Reductions by Simple Equivalence

- Show: Independent-Set \(\leq_P \) Clique

 Independent-Set:
 - Given a graph \(G=(V,E) \) and an integer \(k \), is there a subset \(U \) of \(V \) with \(|U| \geq k \) such that no two vertices in \(U \) are joined by an edge?

 Clique:
 - Given a graph \(G=(V,E) \) and an integer \(k \), is there a subset \(U \) of \(V \) with \(|U| \geq k \) such that every pair of vertices in \(U \) is joined by an edge?
Independent-Set \(\leq_p\) Clique

- Given \((G,k)\) as input to Independent-Set where \(G=(V,E)\)
- Transform to \((G',k)\) where \(G'=(V,E')\) has the same vertices as \(G\) but \(E'\) consists of precisely those edges that are not edges of \(G\)
- \(U\) is an independent set in \(G\)
- \(\iff U\) is a clique in \(G'\)

More Reductions

- Show: Independent Set \(\leq_p\) Vertex-Cover
- **Vertex-Cover:**
 - Given an undirected graph \(G=(V,E)\) and an integer \(k\) is there a subset \(W\) of \(V\) of size at most \(k\) such that every edge of \(G\) has at least one endpoint in \(W\)? (i.e. \(W\) covers all edges of \(G\))?

- **Independent-Set:**
 - Given a graph \(G=(V,E)\) and an integer \(k\), is there a subset \(U\) of \(V\) with \(|U| \geq k\) such that no two vertices in \(U\) are joined by an edge?

Reduction Idea

- **Claim:** In a graph \(G=(V,E)\), \(S\) is an independent set iff \(V-S\) is a vertex cover
- **Proof:**
 - \(\Rightarrow\) Let \(S\) be an independent set in \(G\)
 - Then \(S\) contains at most one endpoint of each edge of \(G\)
 - At least one endpoint must be in \(V-S\)
 - \(V-S\) is a vertex cover
 - \(\Leftarrow\) Let \(W=V-S\) be a vertex cover of \(G\)
 - Then \(S\) does not contain both endpoints of any edge (else \(W\) would miss that edge)
 - \(S\) is an independent set

Reduction

- Map \((G,k)\) to \((G,n-k)\)
 - Previous lemma proves correctness
 - Clearly polynomial time
 - We also get that
 - Vertex-Cover \(\leq_p\) Independent Set
Show: Vertex-Cover ≤ₚ Set-Cover

Vertex-Cover:
- Given an undirected graph $G = (V, E)$ and an integer k is there a subset W of V of size at most k such that every edge of G has at least one endpoint in W? (i.e. W covers all edges of G)?

Set-Cover:
- Given a set U of n elements, a collection $S_1, ..., S_m$ of subsets of U, and an integer k, does there exist a collection of at most k sets whose union is equal to U?

The Simple Reduction

Transformation f maps $(G = (V,E), k)$ to $(U, S_1, ..., S_m, k')$
- $U ← E$
- For each vertex $v ∈ V$ create a set S_v containing all edges that touch v
- $k' ← k$
- Reduction f is clearly polynomial-time to compute
- We need to prove that the resulting algorithm gives the right answer!

Proof of Correctness

Two directions:
- If the answer to Vertex-Cover on (G,k) is YES then the answer for Set-Cover on $f(G,k)$ is YES
 - If a set W of k vertices covers all edges then the collection $\{S_v \mid v ∈ W\}$ of k sets covers all of U
 - If the answer to Set-Cover on $f(G,k)$ is YES then the answer for Vertex-Cover on (G,k) is YES
 - If a subcollection $S_{v_1}, ..., S_{v_k}$ covers all of U then the set $\{v_1, ..., v_k\}$ is a vertex cover in G.

Decision problems

Computational complexity usually analyzed using decision problems
- answer is just 1 or 0 (yes or no).

Why?
- much simpler to deal with
 - deciding whether G has a path from s to t, is certainly no harder than finding a path from s to t in G, so a lower bound on deciding is also a lower bound on finding
 - Less important, but if you have a good decider, you can often use it to get a good finder.
Polynomial time

- Define P (polynomial-time) to be
 - the set of all decision problems solvable by algorithms whose worst-case running time is bounded by some polynomial in the input size.

Beyond P?

- There are many other natural, practical problems for which we don’t know any polynomial-time algorithms

 - e.g. decisionTSP:
 - Given a weighted graph G and an integer k, does there exist a tour that visits all vertices in G having total weight at most k?

Satisfiability

- Boolean variables x_1, \ldots, x_n
 - taking values in $\{0, 1\}$, $0=\text{false}$, $1=\text{true}$
- Literals
 - x_i or $\neg x_i$ for $i=1, \ldots, n$
- Clause
 - a logical OR of one or more literals
 - e.g. $(x_1 \lor \neg x_3 \lor x_7 \lor x_{12})$
- CNF formula
 - a logical AND of a bunch of clauses
- k-CNF formula
 - All clauses have exactly k variables

Satisfiability

- CNF formula example
 - $(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$
 - If there is some assignment of 0’s and 1’s to the variables that makes it true then we say the formula is satisfiable
 - the one above is, the following isn’t
 - $x_1 \land (\neg x_1 \lor x_2) \land (\neg x_2 \lor x_3) \land \neg x_3$
- 3-SAT: Given a CNF formula F with 3 variables per clause, is it satisfiable?
Common property of these problems

- There is a special piece of information, a short certificate or proof, that allows you to efficiently verify (in polynomial-time) that the YES answer is correct. This certificate might be very hard to find.

- e.g.
 - DecisionTSP: the tour itself,
 - Independent-Set, Clique: the set \(U \)
 - 3-SAT: an assignment that makes \(F \) true.

The complexity class NP

- NP consists of all decision problems where
 - You can verify the YES answers efficiently (in polynomial time) given a short (polynomial-size) certificate

 And

- No certificate can fool your polynomial time verifier into saying YES for a NO instance

More Precise Definition of NP

- A decision problem is in NP iff there is a polynomial time procedure \(\text{verify}(.,.) \), and an integer \(k \) such that
 - for every input \(x \) to the problem that is a YES instance there is a certificate \(t \) with \(|t| \leq |x|^k \) such that \(\text{verify}(x,t) = \text{YES} \)
 - and
 - for every input \(x \) to the problem that is a NO instance there does not exist a certificate \(t \) with \(|t| \leq |x|^k \) such that \(\text{verify}(x,t) = \text{YES} \)

Example: CLIQUE is in NP

procedure \(\text{verify}(x,t) \)

 if
 \(x \) is a well-formed representation of a graph \(G = (V, E) \) and an integer \(k \),
 and
 \(t \) is a well-formed representation of a vertex subset \(U \) of \(V \) of size \(k \),
 and
 \(U \) is a clique in \(G \),
 then output "YES"
else output "I'm unconvinced"
Is it correct?

For every \(x = (G, k) \) such that \(G \) contains a \(k \)-clique, there is a certificate \(t \) that will cause \(\text{verify}(x, t) \) to say \text{YES},
- \(t \) = a list of the vertices in such a \(k \)-clique

And no certificate can fool \(\text{verify}(x, \cdot) \) into saying \text{YES} if either
- \(x \) isn't well-formed (the uninteresting case)
- \(x = (G, k) \) but \(G \) does not have any cliques of size \(k \) (the interesting case)

Keys to showing that a problem is in NP

- What's the output? (must be \text{YES}/\text{NO})
- What must the input look like?
- Which inputs need a \text{YES} answer?
 - Call such inputs \text{YES} inputs/\text{YES} instances
- For every given \text{YES} input, is there a certificate that would help?
 - OK if some inputs need no certificate
- For any given \text{NO} input, is there a fake certificate that would trick you?

Solving NP problems without hints

- The only \textbf{obvious algorithm} for most of these problems is \textbf{brute force}:
 - try all possible certificates and check each one to see if it works.
 - \textit{Exponential} time:
 - \(2^n \) truth assignments for \(n \) variables
 - \(n! \) possible TSP tours of \(n \) vertices
 - \(\binom{n}{k} \) possible \(k \) element subsets of \(n \) vertices
 - etc.

What We Know

- Nobody knows if all problems in \textbf{NP} can be done in polynomial time, i.e. does \textbf{P}=\textbf{NP}?
 - one of the most important open questions in all of science.
 - huge practical implications
- Every problem in \textbf{P} is in \textbf{NP}
 - one doesn't even need a certificate for problems in \textbf{P} so just ignore any hint you are given
- Every problem in \textbf{NP} is in exponential time
Some problems in **NP** seem hard
- people have looked for efficient algorithms for them for hundreds of years without success

However
- nobody knows how to prove that they are really hard to solve, i.e. $P \neq NP$

Problems in **NP** that seem hard

Some Examples in NP
- 3-SAT
- Independent-Set
- Clique
- Vertex Cover
- All hard to solve; certificates seem to help on all
- Fast solution to *any* gives fast solution to *all!*

NP-hardness & NP-completeness

Alternative approach to proving problems not in P
- show that they are at least as hard as any problem in **NP**

Rough definition:
- A problem is **NP-hard** iff it is at least as hard as any problem in **NP**
- A problem is **NP-complete** iff it is both
 - **NP-hard**
 - in **NP**
NP-hardness & NP-completeness

- Definition: A problem \(B \) is NP-hard iff
every problem \(A \in \text{NP} \) satisfies \(A \leq_p B \)

- Definition: A problem \(B \) is NP-complete iff \(A \) is NP-hard and \(A \in \text{NP} \)

Even though we seem to have lots of hard problems in \(\text{NP} \) it is not obvious that such super-hard problems even exist!

Implications of Cook-Levin Theorem?

- There is at least one interesting super-hard problem in \(\text{NP} \)

- Is that such a big deal?

- YES!
 - There are lots of other problems that can be solved if we had a polynomial-time algorithm for 3-SAT
 - Many of these problems are exactly as hard as 3-SAT

Cook-Levin Theorem

- Theorem (Cook 1971, Levin 1973):

 3-SAT is NP-complete

- Recall

 - CNF formula
 - \((x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)\)

 - If there is some assignment of 0's and 1's to the variables that makes it true then we say the formula is satisfiable

 3-SAT: Given a 3-CNF formula \(F \), is it satisfiable?

A useful property of polynomial-time reductions

- Theorem: If \(A \leq_p B \) and \(B \leq_p C \) then \(A \leq_p C \)

- Proof idea: (Using \(\leq^1_p \))

 - Compose the reduction \(f \) from \(A \) to \(B \) with the reduction \(g \) from \(B \) to \(C \) to get a new reduction \(h(x) = g(f(x)) \) from \(A \) to \(C \).

 - The general case is similar and uses the fact that the composition of two polynomials is also a polynomial
Cook-Levin Theorem & Implications

- Theorem (Cook 1971, Levin 1973): 3-SAT is NP-complete
 - For proof see CSE 431
- Corollary: B is NP-hard \iff 3-SAT $\leq_p B$
 - (or $A \leq_p B$ for any NP-complete problem A)
- Proof:
 - If B is NP-hard then every problem in NP polynomial-time reduces to B, in particular 3-SAT does since it is in NP
 - For any problem A in NP, $A \leq_p 3$-SAT and so if 3-SAT $\leq_p B$ we have $A \leq_p B$.
 - therefore B is NP-hard if 3-SAT $\leq_p B$

Another NP-complete problem: 3-SAT \leq_p Independent-Set

- A Tricky Reduction:
 - mapping CNF formula F to a pair $\langle G, k \rangle$
 - Let m be the number of clauses of F
 - Create a vertex in G for each literal in F
 - Join two vertices u, v in G by an edge iff
 - u and v correspond to literals in the same clause of F, (green edges) or
 - u and v correspond to literals x and $\neg x$ (or vice versa) for some variable x. (red edges).
 - Set $k = m$
 - Clearly polynomial-time

3-SAT \leq_p Independent-Set

- F: $(x_1 \lor \neg x_3 \lor x_4) \land (x_2 \lor \neg x_4 \lor x_3) \land (x_2 \lor \neg x_1 \lor x_3)$

- Correctness:
 - If F is satisfiable then there is some assignment that satisfies at least one literal in each clause.
 - Consider the set U in G corresponding to the first satisfied literal in each clause.
 - $|U| = m$
 - Since U has only one vertex per clause, no two vertices in U are joined by green edges
 - Since a truth assignment never satisfies both x and $\neg x$, U doesn’t contain vertices labeled both x and $\neg x$ and so no vertices in U are joined by red edges
 - Therefore G has an independent set, U, of size at least m
 - Therefore $\langle G, m \rangle$ is a YES for independent set.
3-SAT \(\leq_p \) Independent-Set

Given assignment: \(x_1 = x_2 = x_3 = x_4 = 1 \),

\(U \) is as circled.

3-SAT \(\leq_p \) Independent-Set

Correctness continued:
- If \((G, m)\) is a YES for Independent-Set then there is a set \(U \) of \(m \) vertices in \(G \) containing no edge.
 - Therefore \(U \) has precisely one vertex per clause because of the green edges in \(G \).
 - Because of the red edges in \(G \), \(U \) does not contain vertices labeled both \(x \) and \(\neg x \).
 - Build a truth assignment \(A \) that makes all literals labeling vertices in \(U \) true and for any variable not labeling a vertex in \(U \), assigns its truth value arbitrarily.
 - By construction, \(A \) satisfies \(F \).
- Therefore \(F \) is a YES for 3-SAT.

Independent-Set is NP-complete

- We just showed that Independent-Set is NP-hard and we already knew Independent-Set is in \(NP \).
- **Corollary:** Clique is NP-complete
 - We showed already that Independent-Set \(\leq_p \) Clique and Clique is in \(NP \).
Problems we already know are NP-complete
- 3-SAT
- Independent-Set
- Clique
- Vertex-Cover
- Set-Cover

There are 1000’s of practical problems that are NP-complete, e.g. scheduling, optimal VLSI layout etc.

Steps to Proving Problem B is NP-complete
- Show B is NP-hard:
 - State: “Reduction is from NP-hard Problem A”
 - Show what the map f is
 - Argue that f is polynomial time
 - Argue correctness: two directions Yes for A implies Yes for B and vice versa.
- Show B is in NP
 - State what hint/certificate is and why it works
 - Argue that it is polynomial-time to check.

Some other NP-complete examples you should know
- Hamiltonian-Cycle: Given a directed graph G is there a cycle in G that visits each vertex in G exactly once?
- Hamiltonian-Path: Given a directed graph G is there a path in G that visits each vertex in G exactly once?
 - Both are also NP-complete when G is an undirected graph
- Note that deciding the similar questions for Eulerian-Cycle and Eulerian-Path (which require that each edge be visited exactly once rather than each vertex) can be done in polynomial time.
 - How?

Travelling-Salesman Problem (TSP)
- Given a set of n cities \(v_1, \ldots, v_n\) and distances between each pair of cities \(d(v_i, v_j)\) what is the shortest tour that visits all the cities?
 - Not a decision problem
- DecisionTSP:
 - Given a set of distances given by \(d\) for each pair of cities in \(v_1, \ldots, v_n\) and an integer \(D\), does there exist a tour that visits all cities having total weight at most \(D\)?
Hamiltonian-Cycle \(\leq_p \) DecisionTSP

- Define the reduction
 - Vertices \(V \) of \(G=(V,E) \) become cities
 - Set \(d(v_i,v_j) \) to 1 if \((v_i,v_j) \in E \)
 - Set \(D=|V| \)

- Claim: There is a Hamiltonian cycle in \(G \) iff there is a tour of length \(|V| \)

Graph Colorability

- Defn: Given a graph \(G=(V,E) \), and an integer \(k \), a \(k \)-coloring of \(G \) is
 - an assignment of up to \(k \) different colors to the vertices of \(G \) so that the endpoints of each edge have different colors.
- 3-Color: Given a graph \(G=(V,E) \), does \(G \) have a 3-coloring?
- Claim: 3-Color is NP-complete
- Proof: 3-Color is in NP:
 - Hint is an assignment of red, green, blue to the vertices of \(G \)
 - Easy to check that each edge is colored correctly

3-SAT \(\leq_p \) 3-Color

- Reduction:
 - We want to map a 3-CNF formula \(F \) to a graph \(G \) so that
 - \(G \) is 3-colorable iff \(F \) is satisfiable

3-SAT \(\leq_p \) 3-Color

- Reduction:
 - We want to map a 3-CNF formula \(F \) to a graph \(G \) so that
 - \(G \) is 3-colorable iff \(F \) is satisfiable

Base Triangle
3-SAT \leq_p 3-Color

Variable Part:
in 3-coloring, variable colors correspond to some truth assignment (same color as T or F)

Clause Part:
Add one 6 vertex gadget per clause connecting its 'outer vertices' to the literals in the clause

Any truth assignment satisfying the formula can be extended to a 3-coloring of the graph

Any 3-coloring of the graph colors each gadget triangle using each color
3-SAT \leq_p 3-Color

Any 3-coloring of the graph has an F opposite the O color in the triangle of each gadget

Any 3-coloring of the graph has T at the other end of the blue edge connected to the F

More NP-completeness

- Subset-Sum problem (Decision version of Knapsack)
 - Given n integers w_1, \ldots, w_n and integer W
 - Is there a subset of the n input integers that adds up to exactly W?

 $O(nW)$ solution from dynamic programming but if W and each w_i can be n bits long then this is exponential time

3-SAT \leq_p Subset-Sum

- Given a 3-CNF formula with m clauses and n variables
- Will create $2m+2n$ numbers that are $m+n$ digits long
 - Two numbers for each variable x_i
 - t_i and f_i (corresponding to x_i being true or x_i being false)
 - Two extra numbers for each clause
 - u_j and v_j (filler variables to handle number of false literals in clause C_j)
3-SAT \leq P Subset-Sum

\[
\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & \ldots & n & 1 & 2 & 3 & 4 & \ldots & m \\
\hline \\
t_i & 1 & 0 & 0 & 0 & \ldots & 0 & 0 & 0 & 1 & \ldots & 1 \\
t_j & 0 & 1 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 & \ldots & 0 \\
t_2 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 & \ldots & 1 \\
t_3 & 0 & 0 & 0 & 0 & \ldots & 0 & 0 & 1 & 1 & \ldots & 0 \\
\hline \\
\vdots & \vdots \\
\hline \\
u_1 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 & \ldots & 0 \\
\hline \\
u_2 & 0 & 0 & 0 & 0 & \ldots & 0 & 1 & 0 & 0 & \ldots & 0 \\
\hline \\
W & 1 & 1 & 1 & 1 & \ldots & 1 & 3 & 3 & 3 & \ldots & 3 \\
\end{array}
\]

\[C_i=(x_1 \lor \neg x_2 \lor \neg x_3)\]

Matching Problems

- **Perfect Bipartite Matching**
 - Given a bipartite graph \(G=(V,E)\) where \(V=X \cup Y\) and \(E \subseteq X \times Y\), is there a set \(M\) in \(E\) such that every vertex in \(V\) is in precisely one edge of \(M\) ?

- In \(P\)
 - Network Flow gives \(O(nm)\) algorithm where \(n=|V|, m=|E|\).

3-Dimensional Matching

- **Perfect Bipartite Matching** is in \(P\)
 - Given a bipartite graph \(G=(V,E)\) where \(V=X \cup Y\) and \(E \subseteq X \times Y\), is there a subset \(M\) in \(E\) such that every vertex in \(V\) is in precisely one edge of \(M\) ?

- **3-Dimensional Matching**
 - Given a tripartite hypergraph \(G=(V,E)\) where \(V=X \cup Y \cup Z\) and \(E \subseteq X \times Y \times Z\), is there a subset \(M\) in \(E\) such that every vertex in \(V\) is in precisely one hyperedge of \(M\) ?
 - is in \(NP\): Certificate is the set \(M\)

Theorem: 3-Dimensional Matching is \(NP\)-complete

Proof:

- We’ve already seen that it is in \(NP\)
- **3-Dimensional Matching** is \(NP\)-hard:
 - Reduction from \(3-SAT\)
 - Given a 3-CNF formula \(F\) we create a tripartite hypergraph (“hyperedges” are triangles) \(G\) based on \(F\) as follows
3-SAT \leq_p 3-Dimensional Matching

Variable part:
- If variable x_i occurs r_i times in F create r_i red and r_i green triangles linked in a circle, one pair per occurrence
- Perfect matching M must either use all the green edges leaving red tips uncovered (x_i is assigned false) or all the red edges leaving all green tips uncovered (x_i is assigned true)

Well-formed:
- Each triangle has one of each type of node:

Correctness:
- If F has a satisfying assignment then choose the following triangles which form a perfect 3-dimensional matching in G:
 - Either the red or the green triangles in the cycle for x_i - the opposite of the assignment to x_i
 - The triangle containing the first true literal for each clause and the two clause nodes
 - $2m$ slack triangles one per new pair of nodes to cover all the remaining tips

Clause part:
- Two new nodes per clause joined to each of its literals:

Slack:
- If there are m clauses then there are $3m$ variable occurrences. That means $3m$ total tips are not covered by whichever of red or green triangles not chosen. Of these, m are covered if each clause is satisfied. Need to cover the remaining $2m$ tips.

Solution:
- Add $2m$ pairs of slack vertices
- Add triangles joining each pair with every tip!
3-SAT \leq_p 3-Dimensional Matching

Correctness continued:

- If G has a perfect 3-dimensional matching then:
 - Each blue node in the cycle for each x_i is contained in exactly two triangles, exactly one of which must be in M. If one triangle in the cycle is in M, the others must be the same color. We use the color not used to define the truth assignment to x_i.
 - The two nodes for any clause must be contained in an edge which must also contain a third node that corresponds to a literal made true by the truth assignment. Therefore the truth assignment satisfies F so it is satisfiable.

P vs NP

Theory
- $P = NP$?
- Open Problem!
- Bet against it

Practice
- Many interesting, useful, natural, well-studied problems known to be NP-complete
- With rare exceptions, no one routinely succeeds in finding exact solutions to large, arbitrary instances

Is NP as bad as it gets?

- NO! NP-complete problems are frequently encountered, but there are worse:
 - Some problems provably require exponential time.
 - Ex: Does M halt on input x in $2^{|x|}$ steps?
 - Some require 2^n, 2^{2^n}, $2^{2^{2^n}}$, ... steps
 - And some are just plain uncomputable