Graph Traversal

Learn the basic structure of a graph
Walk from a fixed starting vertex \(s \) to find all vertices reachable from \(s \)

Three states of vertices
- unvisited
- visited/discovered
- fully-explored
Generic Graph Traversal Algorithm

Find: set R of vertices reachable from $s \in V$

Reachable(s):

$R \leftarrow \{s\}$

While there is a $(u,v) \in E$ where $u \in R$ and $v \notin R$

Add v to R

Generic Traversal Always Works

- **Claim:** At termination R is the set of nodes reachable from s

- **Proof**
 - \subseteq: For every node $v \in R$ there is a path from s to v
 - \supseteq: Suppose there is a node $w \notin R$ reachable from s via a path P
 - Take first node v on P such that $v \notin R$
 - Predecessor u of v in P satisfies $u \in R$ and $(u,v) \in E$
 - But this contradicts the fact that the algorithm exited the while loop.

Breadth-First Search

- Completely explore the vertices in order of their distance from s

- Naturally implemented using a queue

BFS(s)

Global initialization: mark all vertices “unvisited”

BFS(s)

mark s “visited”; $R \leftarrow \{s\}$; layer $L_0 \leftarrow \{s\}$

while L_i not empty

$L_{i+1} \leftarrow \emptyset$

For each $u \in L_i$

for each edge $\{u,v\}$

if (v is “unvisited”)

mark v “visited”

Add v to set R and to layer L_{i+1}

mark u “fully-explored”

$i \leftarrow i+1$
Properties of BFS

- BFS(s) visits x if and only if there is a path in G from s to x.
- Edges followed to undiscovered vertices define a “breadth first spanning tree” of G
- Layer i in this tree, L_i
 - those vertices u such that the shortest path in G from the root s is of length i.
- On undirected graphs
 - All non-tree edges join vertices on the same or adjacent layers

Properties of BFS

- On undirected graphs
 - All non-tree edges join vertices on the same or adjacent layers
- Suppose not
 - Then there would be vertices (x,y) such that x \in L_i and y \in L_j and j > i + 1
 - Then, when vertices incident to x are considered in BFS y would be added to L_{i+1} and not to L_j

BFS Application: Shortest Paths

Tree gives shortest paths from start vertex

can label by distances from start

Graph Search Application: Connected Components

- Want to answer questions of the form:
 - Given: vertices u and v in G
 - Is there a path from u to v?
- Idea: create array A such that A[u] = smallest numbered vertex that is connected to u
 - question reduces to whether A[u]=A[v]?
 - Q: Why not create an array Path[u,v]?
Graph Search Application: Connected Components

- initial state: all \(v \) unvisited

 for \(s \leftarrow 1 \) to \(n \) do
 - if state\((s) \neq \text{“fully-explored”}\) then
 - BFS\((s)\): setting \(A[u] \leftarrow s \) for each \(u \) found
 - (and marking \(u \) visited/fully-explored)
 endif
 endfor

- Total cost: \(O(n+m) \)
 - each vertex is touched once in this outer procedure and the edges examined in the different BFS runs are disjoint
 - works also with Depth First Search

DFS\((u)\) – Recursive version

Global Initialization: mark all vertices "unvisited"

DFS\((u)\)
 - mark \(u \) “visited” and add \(u \) to \(R \)
 - for each edge \{\(u,v \)\}
 - if \(v \) is “unvisited”
 - DFS\((v)\)
 end for
 - mark \(u \) “fully-explored”

Properties of DFS\((s)\)

- Like BFS\((s)\):
 - DFS\((s)\) visits \(x \) if and only if there is a path in \(G \) from \(s \) to \(x \)
 - Edges into undiscovered vertices define a "depth first spanning tree" of \(G \)

- Unlike the BFS tree:
 - the DFS spanning tree isn't minimum depth
 - its levels don't reflect min distance from the root
 - non-tree edges never join vertices on the same or adjacent levels

 BUT…

Non-tree edges

- All non-tree edges join a vertex and one of its descendents/ancestors in the DFS tree

 - No cross edges.
No cross edges in DFS on undirected graphs

- **Claim:** During $\text{DFS}(x)$ every vertex marked visited is a descendant of x in the DFS tree T
- **Claim:** For every x, y in the DFS tree T, if (x, y) is an edge not in T then one of x or y is an ancestor of the other in T
- **Proof:**
 - One of x or y is visited first, suppose WLOG that x is visited first and therefore $\text{DFS}(x)$ was called before $\text{DFS}(y)$
 - During $\text{DFS}(x)$, the edge (x, y) is examined
 - Since (x, y) is a not an edge of T, y was visited when the edge (x, y) was examined during $\text{DFS}(x)$
 - Therefore y was visited during the call to $\text{DFS}(x)$ so y is a descendant of x.

Applications of Graph Traversal: Bipartiteness Testing

- **Easy:** A graph G is not bipartite if it contains an odd length cycle
- **WLOG:** G is connected
 - Otherwise run on each component
- **Simple idea:** start coloring nodes starting at a given node s
 - Color s red
 - Color all neighbors of s blue
 - Color all their neighbors red
 - If you ever hit a node that was already colored
 - the same color as you want to color it, ignore it
 - the opposite color, output error

BFS gives Bipartiteness

- Run BFS assigning all vertices from layer L_i the color $i \mod 2$
 - i.e. red if they are in an even layer, blue if in an odd layer
- If there is an edge joining two vertices from the same layer then output “Not Bipartite”

Why does it work?

- u and v have a common ancestor
- Cycle length $2(j-i)+1$
DFS(v) for a directed graph

Properties of Directed DFS
- Before DFS(s) returns, it visits all previously unvisited vertices reachable via directed paths from s
- Every cycle contains a back edge in the DFS tree

Directed Acyclic Graphs
- A directed graph G=(V,E) is acyclic if it has no directed cycles
- Terminology: A directed acyclic graph is also called a DAG
Topological Sort

- **Given**: a directed acyclic graph (DAG) \(G=(V,E) \)
- **Output**: numbering of the vertices of \(G \) with distinct numbers from 1 to \(n \) so edges only go from lower number to higher numbered vertices

Applications
- nodes represent tasks
- edges represent precedence between tasks
- topological sort gives a sequential schedule for solving them

Directed Acyclic Graph

![Directed Acyclic Graph Diagram]

In-degree 0 vertices

- Every DAG has a vertex of in-degree 0
- **Proof**: By contradiction
 - Suppose every vertex has some incoming edge
 - Consider following procedure:
    ```
    while (true) do
      v ← some predecessor of v
    ```
 - After \(n+1 \) steps where \(n=|V| \) there will be a repeated vertex
 - This yields a cycle, contradicting that it is a DAG

Topological Sort

- Can do using DFS
- **Alternative simpler idea**:
 - Any vertex of in-degree 0 can be given number 1 to start
 - Remove it from the graph and then give a vertex of in-degree 0 number 2, etc.
Implementing Topological Sort

- Go through all edges, computing array with in-degree for each vertex \(O(m+n) \)
- Maintain a queue (or stack) of vertices of in-degree 0
- Remove any vertex in queue and number it
- When a vertex is removed, decrease in-degree of each of its neighbors by 1 and add them to the queue if their degree drops to 0

Total cost \(O(m+n) \)