Dynamic Programming

- Give a solution of a problem using smaller sub-problems where the parameters of all the possible sub-problems are determined in advance
- Useful when the same sub-problems show up again and again in the solution

A simple case: Computing Fibonacci Numbers

- Recall $F_n = F_{n-1} + F_{n-2}$ and $F_0 = 0$, $F_1 = 1$
- Recursive algorithm:
 - Fibo(n)
 - if $n = 0$ then return(0)
 - else if $n = 1$ then return(1)
 - else return(Fibo($n-1$) + Fibo($n-2$))

Call tree - start
Memoization (Caching)

- Remember all values from previous recursive calls
- Before recursive call, test to see if value has already been computed

Dynamic Programming
- Convert memoized algorithm from a recursive one to an iterative one

Fibonacci Dynamic Programming Version

FiboDP(n):
F[0] ← 0
F[1] ← 1
for i = 2 to n do
 F[i] ← F[i-1] + F[i-2]
endfor
return(F[n])

Fibonacci: Space-Saving Dynamic Programming

FiboDP(n):
prev ← 0
curr ← 1
for i = 2 to n do
 temp ← curr
 curr ← curr + prev
 prev ← temp
endfor
return(curr)
Dynamic Programming

- Useful when
 - same recursive sub-problems occur repeatedly
 - Can anticipate the parameters of these recursive calls
 - The solution to whole problem can be figured out with knowing the internal details of how the sub-problems are solved
- Principle of optimality
 "Optimal solutions to the sub-problems suffice for optimal solution to the whole problem"

Three Steps to Dynamic Programming

- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive calls is "small"
 - e.g., bounded by a low-degree polynomial
 - Can use memoization
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

Weighted Interval Scheduling

- Same problem as interval scheduling except that each request i also has an associated value or weight w_i
- w_i might be
 - amount of money we get from renting out the resource for that time period
 - amount of time the resource is being used $w_i=f_i-s_i$
- Goal: Find compatible subset S of requests with maximum total weight

Greedy Algorithms for Weighted Interval Scheduling?

- No criterion seems to work
 - Earliest start time s_i
 - Doesn't work
 - Shortest request time f_i-s_i
 - Doesn't work
 - Fewest conflicts
 - Doesn't work
 - Earliest finish time f_i
 - Doesn't work
 - Largest weight w_i
 - Doesn't work
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Suppose that like ordinary interval scheduling we have first sorted the requests by finish time \(f_i \) so \(f_1 \leq f_2 \leq ... \leq f_n \)
- Say request \(i \) comes before request \(j \) if \(i < j \)
- For any request \(j \) let \(p(j) \) be
 - the largest-numbered request before \(j \) that is compatible with \(j \)
 - or 0 if no such request exists
- Therefore \(\{1,...,p(j)\} \) is precisely the set of requests before \(j \) that are compatible with \(j \)

Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Two cases depending on whether an optimal solution \(O \) includes request \(n \)
 - If it does include request \(n \) then all other requests in \(O \) must be contained in \(\{1,...,p(n)\} \)
 - Not only that!
 - Any set of requests in \(\{1,...,p(n)\} \) will be compatible with request \(n \)
 - So in this case the optimal solution \(O \) must contain an optimal solution for \(\{1,...,p(n)\} \)
 - “Principle of Optimality”
 - If it does not include request \(n \) then all requests in \(O \) must be contained in \(\{1,...,n-1\} \)
 - Not only that!
 - The optimal solution \(O \) must contain an optimal solution for \(\{1,...,n-1\} \)
 - “Principle of Optimality”

Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- All subproblems involve requests \(\{1,...,i\} \) for some \(i \)
 - For \(i=1,...,n \) let \(\text{OPT}(i) \) be the weight of the optimal solution to the problem \(\{1,...,i\} \)
 - The two cases give
 \[\text{OPT}(n) = \max[w_n + \text{OPT}(p(n)), \text{OPT}(n-1)] \]
 - Also
 - \(n \in O \) iff \(w_n + \text{OPT}(p(n)) > \text{OPT}(n-1) \)
Towards Dynamic Programming: Step 1 – A Recursive Algorithm

- Sort requests and compute array $p[i]$ for each $i=1,...,n$

ComputeOpt(n)
 if $n=0$ then return(0)
 else
 $u \leftarrow$ ComputeOpt($p[n]$)
 $v \leftarrow$ ComputeOpt($n-1$)
 if $w_n+u>v$ then return(w_n+u)
 else return(v)
 endif

Towards Dynamic Programming: Step 2 – Small # of parameters

- ComputeOpt(n) can take exponential time in the worst case
 - 2^n calls if $p(i)=i-1$ for every i
- There are only n possible parameters to ComputeOpt
- Store these answers in an array $OPT[n]$ and only recompute when necessary
 - Memoization
- Initialize $OPT[i]=0$ for $i=1,...,n$

Dynamic Programming: Step 2 – Memoization

ComputeOpt(n)
 if $n=0$ then return(0)
 else
 $u \leftarrow$ ComputeOpt($p[n]$)
 $v \leftarrow$ ComputeOpt($n-1$)
 if $w_n+u>v$ then return(w_n+u)
 else return(v)
 endif

MComputeOpt(n)
 if $OPT[n]=0$ then
 $v \leftarrow$ ComputeOpt(n)
 $OPT[n] \leftarrow v$
 else
 return($OPT[n]$)
 endif

Dynamic Programming Step 3: Iterative Solution

- The recursive calls for parameter n have parameter values i that are $< n$

IterativeComputeOpt(n)
 array $OPT[0..n]$
 $OPT[0] \leftarrow 0$
 for $i=1$ to n
 if $w_i+OPT[p[i]]$ > $OPT[i-1]$ then
 $OPT[i] \leftarrow w_i+OPT[p[i]]$
 else
 $OPT[i] \leftarrow OPT[i-1]$
 endif
 endfor
Producing the Solution

IterativeComputeOptSolution(n)
array OPT[0..n], Used[1..n]
OPT[0] ← 0
for i = 1 to n
 if w_i + OPT[p[i]] > OPT[i-1] then
 OPT[i] ← w_i + OPT[p[i]]
 Used[i] ← 1
 else
 OPT[i] ← OPT[i-1]
 Used[i] ← 0
 endif
endfor

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>p[i]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>OPT[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Used[i]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_i</td>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>f_i</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>w_i</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>p[i]</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>OPT[i]</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>16</td>
</tr>
<tr>
<td>Used[i]</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

<table>
<thead>
<tr>
<th>s_i</th>
<th>f_i</th>
<th>w_i</th>
<th>p[i]</th>
<th>OPT[i]</th>
<th>Used[i]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2</td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>9</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

S={9,7,2}

Segmented Least Squares

Least Squares
- Given a set P of n points in the plane $p_1=(x_1,y_1),...,p_n=(x_n,y_n)$ with $x_1<...<x_n$
- Determine a line L given by $y=ax+b$ that optimizes the totaled 'squared error'
 - $\text{Error}(L,P)=\sum_i(y_i-ax_i-b)^2$
- A classic problem in statistics
- Optimal solution is known (see text)
 - Call this line(P) and its error error(P)

What if data seems to follow a piece-wise linear model?
What if data seems to follow a piece-wise linear model?

- Number of pieces to choose is not obvious
- If we chose \(n-1 \) pieces we could fit with 0 error
 - Not fair
- Add a penalty of \(C \) times the number of pieces to the error to get a total penalty
- How do we compute a solution with the smallest possible total penalty?

Recursive idea

- If we knew the point \(p_j \) where the last line segment began then we could solve the problem optimally for points \(p_1, \ldots, p_j \) and combine that with the last segment to get a global optimal solution
 - Let \(OPT(i) \) be the optimal penalty for points \(\{p_1, \ldots, p_i\} \)
 - Total penalty for this solution would be \(\text{Error}(\{p_j, \ldots, p_n\}) + C + OPT(j-1) \)
Recursive idea
- We don’t know which point is \(p_j \)
- But we do know that \(1 \leq j \leq n \)
- The optimal choice will simply be the best among these possibilities
Therefore
\[
\text{OPT}(n) = \min_{1 \leq j \leq n} \{ \text{Error}(\{p_j, \ldots, p_n\}) + C + \text{OPT}(j-1) \}
\]

Knapsack (Subset-Sum) Problem
- Given:
 - integer \(W \) (knapsack size)
 - \(n \) object sizes \(x_1, x_2, \ldots, x_n \)
- Find:
 - Subset \(S \) of \(\{1, \ldots, n\} \) such that \(\sum_{i \in S} x_i \leq W \) but \(\sum_{i \in S} x_i \) is as large as possible

1. **Segmented Least Squares**
 - **Recursive idea**
 - We don’t know which point is \(p_j \)
 - But we do know that \(1 \leq j \leq n \)
 - The optimal choice will simply be the best among these possibilities
 - Therefore
 \[
 \text{OPT}(n) = \min_{1 \leq j \leq n} \{ \text{Error}(\{p_j, \ldots, p_n\}) + C + \text{OPT}(j-1) \}
 \]

2. **Dynamic Programming Solution**

```plaintext
SegmentedLeastSquares(n)
    array OPT[0..n], Begin[1..n]
    OPT[0] ← 0
    for i = 1 to n
        OPT[i] ← Error(\{p_1, ..., p_i\}) + C
        Begin[i] ← i
    for j = 2 to i-1
        e ← Error(\{p_j, ..., p_i\}) + C + OPT[j-1]
        if e < OPT[i] then
            OPT[i] ← e
            Begin[i] ← j
        endif
    endwhile
FindSegments
    i ← n
    S ← ∅
    while i > 1 do
        compute Line(\{p_{Begin[i]}, ..., p_i\})
        output Line(p_{Begin[i]}, p_i)
        i ← Begin[i]
    endwhile
return(OPT[n])
```

3. **Knapsack (Subset-Sum) Problem**

```plaintext
Given:
- integer \( W \) (knapsack size)
- \( n \) object sizes \( x_1, x_2, \ldots, x_n \)
Find:
- Subset \( S \) of \( \{1, \ldots, n\} \) such that \( \sum_{i \in S} x_i \leq W \) but \( \sum_{i \in S} x_i \) is as large as possible
```
Recursive Algorithm

- Let $K(n,W)$ denote the problem to solve for W and x_1, x_2, \ldots, x_n
- For $n > 0$,
 - The optimal solution for $K(n,W)$ is the better of the optimal solution for either
 $K(n-1,W)$ or $x_n + K(n-1, W - x_n)$
- For $n = 0$
 - $K(0, W)$ has a trivial solution of an empty set S with weight 0

Recursive calls

- Recursive calls on list ..., 3, 4, 7

Common Sub-problems

- Only sub-problems are $K(i,w)$ for
 - $i = 0, 1, \ldots, n$
 - $w = 0, 1, \ldots, W$
- Dynamic programming solution
 - Table entry for each $K(i,w)$
 - OPT - value of optimal soln for first i objects and weight w
 - $belong$ flag - is x_i a part of this solution?
 - Initialize $OPT[0,w]$ for $w = 0, \ldots, W$
 - Compute all $OPT[i,*]$ from $OPT[i-1,*]$ for $i > 0$

Dynamic Knapsack Algorithm

for $w = 0$ to W; $OPT[0,w] \leftarrow 0$; end for
for $i = 1$ to n do
 for $w = 0$ to W do
 $OPT[i,w] \leftarrow OPT[i-1,w]$
 $belong[i,w] \leftarrow 0$
 if $w \geq x_i$ then
 $val \leftarrow x_i + OPT[i,w-x_i]$
 if $val > OPT[i,w]$ then
 $OPT[i,w] \leftarrow val$
 $belong[i,w] \leftarrow 1$
 end if
 end if
 end for
end for
return($OPT[n,W]$)

Time $O(nW)$
Sample execution on 2, 3, 4, 7 with K=15

Saving Space
- To compute the value OPT of the solution only need to keep the last two rows of OPT at each step
- What about determining the set S?
 - Follow the belong flags O(n) time
 - What about space?

Three Steps to Dynamic Programming
- Formulate the answer as a recurrence relation or recursive algorithm
- Show that the number of different values of parameters in the recursive algorithm is “small”
 - e.g., bounded by a low-degree polynomial
- Specify an order of evaluation for the recurrence so that you already have the partial results ready when you need them.

RNA Secondary Structure: Dynamic Programming on Intervals
- RNA: sequence of bases
 - String over alphabet \{A, C, G, U\}
- RNA folds and sticks to itself like a zipper
 - A bonds to U
 - C bonds to G
 - Bends can’t be sharp
 - No twisting or criss-crossing
- How the bonds line up is called the RNA secondary structure
RNA Secondary Structure

- Input: String $x_1...x_n \in \{A,C,G,U\}^*$
- Output: Maximum size set S of pairs (i,j) such that
 - $\{x_i,x_j\} = \{A,U\}$ or $\{x_i,x_j\} = \{C,G\}$
 - The pairs in S form a matching
 - $i < j - 4$ (no sharp bends)
 - No crossing pairs
 - If (i,j) and (k,l) are in S then it is not the case that they cross as in $i < k < j < l$

Recursion Solution

- Try all possible matches for the last base

General form:

$$OPT(i..j) = \max(OPT(i..j-1), 1 + \max_{k=i..j-5} (OPT(i..k-1) + OPT(k+1..j-1)))$$

where x_k matches x_j and $k \neq 1$.
RNA Secondary Structure

- 2D Array $\text{OPT}(i,j)$ for $i \leq j$ represents optimal # of matches entirely for segment $i..j$
- For $j-i \leq 4$ set $\text{OPT}(i,j)=0$ (no sharp bends)
- Then compute $\text{OPT}(i,j)$ values when $j-i=5,6,...,n-1$ in turn using recurrence.
- Return $\text{OPT}(1,n)$
- Total of $O(n^3)$ time
- Can also record matches along the way to produce S
 - Algorithm is similar to the polynomial-time algorithm for Context-Free Languages based on Chomsky Normal Form from 322
 - Both use dynamic programming over intervals

Sequence Alignment: Edit Distance

- Given:
 - Two strings of characters $A=a_1 a_2 ... a_n$ and $B=b_1 b_2 ... b_m$
- Find:
 - The minimum number of edit steps needed to transform A into B where an edit can be:
 - **insert** a single character
 - **delete** a single character
 - **substitute** one character by another

Sequence Alignment vs Edit Distance

- Sequence Alignment
 - Insert corresponds to aligning with a “–” in the first string
 - Cost δ (in our case 1)
 - Delete corresponds to aligning with a “–” in the second string
 - Cost δ (in our case 1)
 - Replacement of an a by a b corresponds to a mismatch
 - Cost $\alpha_{a,b}$ (in our case 1 if $a \neq b$ and 0 if $a=b$)
- In Computational Biology this alignment algorithm is attributed to Smith & Waterman

Applications

- "diff" utility – where do two files differ
- Version control & patch distribution – save/send only changes
- Molecular biology
 - Similar sequences often have similar origin and function
 - Similarity often recognizable despite millions or billions of years of evolutionary divergence
Recursive Solution

- **Sub-problems:** Edit distance problems for all prefixes of A and B that don’t include all of both A and B

- Let $D(i,j)$ be the number of edits required to transform $a_1 \ a_2 \ ... \ a_i$ into $b_1 \ b_2 \ ... \ b_j$

- Clearly $D(0,0) = 0$

Computing $D(n,m)$

- Imagine how best sequence handles the last characters a_n and b_m
- If best sequence of operations
 - deletes a_n then $D(n,m) = D(n-1,m) + 1$
 - inserts b_m then $D(n,m) = D(n,m-1) + 1$
 - replaces a_n by b_m then $D(n,m) = D(n-1,m-1) + 1$
 - matches a_n and b_m then $D(n,m) = D(n-1,m-1)$

Recursive algorithm $D(n,m)$

```
if n=0 then
    return (m)
elseif m=0 then
    return(n)
else
    if $a_n=b_m$ then
        replace-cost ← 0
        cost of substitution of $a_n$ by $b_m$ (if used)
    else
        replace-cost ← 1
    endif
    return(min( $D(n-1, m)+1$, $D(n, m-1)+1$, $D(n-1, m-1)+replace-cost$))
```
Dynamic Programming

For $j = 0$ to m; $D(0,j) \leftarrow j$; endfor

For $i = 1$ to n; $D(i,0) \leftarrow i$; endfor

For $i = 1$ to n

For $j = 1$ to m

If $a_i = b_j$ then

Replace-cost $\leftarrow 0$

Else

Replace-cost $\leftarrow 1$

Endif

$D(i,j) \leftarrow \min \{ D(i-1,j-1) + 1, D(i-1,j) + 1, D(i,j-1) + \text{replace-cost} \}$

Endfor

Endfor

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

| T | 4 |
|---|
| 5 |

| T | 5 |
|---|
| A | 6 |

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

| T | 2 | 1 | 2 | 1 |
|---|---|---|---|
| T | 5 |

| T | 5 |
|---|
| A | 6 |
Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example run with AGACATTG and GAGTTA

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>G</th>
<th>A</th>
<th>C</th>
<th>A</th>
<th>T</th>
<th>T</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reading off the operations

- Follow the sequence and use each color of arrow to tell you what operation was performed.
- From the operations can derive an optimal alignment

\[\text{A G A C A T T G} \\
\text{ _ G A G _ T T A} \]

Saving Space

- To compute the distance values we only need the last two rows (or columns)
 - $O(\min(m,n))$ space
- To compute the alignment/sequence of operations
 - seem to need to store all $O(mn)$ pointers/arrow colors
- Nifty divide and conquer variant that allows one to do this in $O(\min(m,n))$ space and retain $O(mn)$ time
 - In practice the algorithm is usually run on smaller chunks of a large string, e.g. m and n are lengths of genes so a few thousand characters
 - Researchers want all alignments that are close to optimal
 - Basic algorithm is run since the whole table of pointers (2 bits each) will fit in RAM
 - Ideas are neat, though

Saving space

- Alignment corresponds to a path through the table from lower right to upper left
 - Must pass through the middle column
- Recursively compute the entries for the middle column from the left
 - If we knew the cost of completing each then we could figure out where the path crossed
 - Problem
 - There are n possible strings to start from.
 - Solution
 - Recursively calculate the right half costs for each entry in this column using alignments starting at the other ends of the two input strings!
 - Can reuse the storage on the left when solving the right hand problem

Shortest paths with negative cost edges (Bellman-Ford)

- Dijsktra’s algorithm failed with negative-cost edges
 - What can we do in this case?
 - Negative-cost cycles could result in shortest paths with length $-\infty$
- Suppose no negative-cost cycles in G
 - Shortest path from s to t has at most $n-1$ edges
 - If not, there would be a repeated vertex which would create a cycle that could be removed since cycle can’t have $-ve$ cost
Shortest paths with negative cost edges (Bellman-Ford)

- We want to grow paths from \(s \) to \(t \) based on the \# of edges in the path
- Let \(\text{Cost}(s,t,i) \) = cost of minimum-length path from \(s \) to \(t \) using up to \(i \) hops.

 \[
 \text{Cost}(v,t,0) = \begin{cases}
 0 & \text{if } v = t \\
 \infty & \text{otherwise}
 \end{cases}
 \]

- \(\text{Cost}(v,t,i) = \min \{ \text{Cost}(v,t,i-1), \min_{(v,w) \in E} (c_{vw} + \text{Cost}(w,t,i-1)) \} \)

Bellman-Ford

- Observe that the recursion for \(\text{Cost}(s,t,i) \) doesn’t change \(t \)

 - Only store an entry for each \(v \) and \(i \)

 - Termed \(\text{OPT}(v,i) \) in the text
- Also observe that to compute \(\text{OPT}(*,i) \) we only need \(\text{OPT}(*,i-1) \)

 - Can store a current and previous copy in \(O(n) \) space.

Bellman-Ford

ShortestPath(\(G,s,t \))

for all \(v \in V \)

\(\text{OPT}[v] \leftarrow \infty \)

\(\text{OPT}[t] \leftarrow 0 \)

for \(i = 1 \) to \(n-1 \) do

 for all \(v \in V \) do

 \(\text{OPT}'[v] \leftarrow \min_{(v,w) \in E} (c_{vw} + \text{OPT}[w]) \)

 for all \(v \in V \) do

 \(\text{OPT}[v] \leftarrow \min(\text{OPT}'[v], \text{OPT}[v]) \)

return \(\text{OPT}[s] \)

Negative cycles

- **Claim:** There is a negative-cost cycle that can reach \(t \) iff for some vertex \(v \in V \), \(\text{Cost}(v,t,n) < \text{Cost}(v,t,n-1) \)
- **Proof:**

 - We already know that if there aren’t any then we only need paths of length up to \(n-1 \)

 - For the other direction

 - The recurrence computes \(\text{Cost}(v,t,i) \) correctly for any number of hops \(i \)

 - The recurrence reaches a fixed point if for every \(v \in V \), \(\text{Cost}(v,t,i) = \text{Cost}(v,t,i-1) \)

 - A negative-cost cycle means that eventually some \(\text{Cost}(v,t,i) \) gets smaller than any given bound

 - Can’t have a –ve cost cycle if for every \(v \in V \), \(\text{Cost}(v,t,n) = \text{Cost}(v,t,n-1) \)
Last details

- Can run algorithm and stop early if the \(\text{OPT} \) and \(\text{OPT}' \) arrays are ever equal
 - Even better, one can update only neighbors \(v \) of vertices \(w \) with \(\text{OPT}'[w] \neq \text{OPT}[w] \)
- Can store a successor pointer when we compute \(\text{OPT} \)
 - Homework assignment

- By running for step \(n \) we can find some vertex \(v \) on a negative cycle and use the successor pointers to find the cycle

Bellman-Ford

Diagram of a graph with edge weights, showing a negative cycle and how the Bellman-Ford algorithm can find it.
Bellman-Ford with a DAG

Edges only go from lower to higher-numbered vertices
• Update distances in reverse order of topological sort
• Only one pass through vertices required
• $O(n+m)$ time