CSE 421: Introduction to Algorithms

Divide and Conquer

Paul Beame

Algorithm Design Techniques

- Divide & Conquer
 - Reduce problem to one or more sub-problems of the same type
 - Typically, each sub-problem is at most a constant fraction of the size of the original problem
 - e.g. Mergesort, Binary Search, Strassen’s Algorithm, Quicksort (kind of)

Fast exponentiation

- **Power**(a,n)
 - **Input:** integer n and number a
 - **Output:** a^n

- Obvious algorithm
 - n-1 multiplications

- Observation:
 - if n is even, $n=2m$, then $a^n=a^m\cdot a^m$

Divide & Conquer Algorithm

- **Power**(a,n)
 - if $n=0$ then return(1)
 - else if $n=1$ then return(a)
 - else
 - $x \leftarrow$ **Power**($a,\lfloor n/2 \rfloor$)
 - if n is even then
 - return($x\cdot x$)
 - else
 - return($a\cdot x\cdot x$)
Analysis

- Worst-case recurrence
 - \(T(n) = T(\lfloor n/2 \rfloor) + 2 \) for \(n \geq 1 \)
 - \(T(1) = 0 \)
- Time
 - \(T(n) = T(\lfloor n/2 \rfloor) + 2 \leq T(\lfloor n/4 \rfloor) + 2 + 2 \leq \cdots \leq T(1) + 2 + \cdots + 2 = 2 \log_2 n \) copies
- More precise analysis:
 - \(T(n) = \lceil \log_2 n \rceil + \# \text{ of } 1\text{'s in } n\text{'s binary representation} \)

A Practical Application- RSA

- Instead of \(a^n \) want \(a^n \mod N \)
 - \(a^{i+j} \mod N = (a^i \mod N) \cdot (a^j \mod N) \mod N \)
 - same algorithm applies with each \(x \cdot y \) replaced by
 - \(((x \mod N) \cdot (y \mod N)) \mod N \)
- In RSA cryptosystem (widely used for security)
 - need \(a^n \mod N \) where \(a, n, N \) each typically have 1024 bits
 - Power: at most 2048 multiplies of 1024 bit numbers
 - relatively easy for modern machines
 - Naive algorithm: \(2^{1024} \) multiplies

Binary search for roots (bisection method)

- Given:
 - continuous function \(f \) and two points \(a < b \) with \(f(a) \leq 0 \) and \(f(b) > 0 \)
- Find:
 - approximation to \(c \) s.t. \(f(c) = 0 \) and \(a < c < b \)

Bisection method

Bisection\((a, b, \varepsilon)\)

- if \((a-b) < \varepsilon \) then
 - return\((a)\)
- else
 - \(c \leftarrow (a+b)/2 \)
 - if \(f(c) \leq 0 \) then
 - return\((Bisection(c,b,\varepsilon)) \)
 - else
 - return\((Bisection(a,c,\varepsilon)) \)
Time Analysis

- At each step we halved the size of the interval
- It started at size $b-a$
- It ended at size ε
- \# of calls to f is $\log_2((b-a)/\varepsilon)$

Old favorites

- **Binary search**
 - One subproblem of half size plus one comparison
 - Recurrence $T(n) = T(\lceil n/2 \rceil) + 1$ for $n \geq 2$
 - $T(1) = 0$
 - So $T(n)$ is $\lceil \log_2 n \rceil + 1$
- **Mergesort**
 - Two subproblems of half size plus merge cost of $n-1$ comparisons
 - Recurrence $T(n) \leq 2T(\lceil n/2 \rceil) + n-1$ for $n \geq 2$
 - $T(1) = 0$
 - Roughly n comparisons at each of $\log_2 n$ levels of recursion
 - So $T(n)$ is roughly $2n \log_2 n$

Euclidean Closest Pair

- **Given** a set P of n points p_1, \ldots, p_n with real-valued coordinates
- **Find** the pair of points $p_i, p_j \in P$ such that the Euclidean distance $d(p_i, p_j)$ is minimized
- $\Theta(n^2)$ possible pairs
- In one dimension: easy $O(n \log n)$ algorithm
 - Sort the points
 - Compare consecutive elements in the sorted list
- What about points in the plane?

Closest Pair in the Plane

No single direction along which one can sort points to guarantee success!
Closest Pair In the Plane: Divide and Conquer

- Sort the points by their x coordinates
- Split the points into two sets of n/2 points L and R by x coordinate
- Recursively compute
 - closest pair of points in L, (p_L, q_L)
 - closest pair of points in R, (p_R, q_R)
- Let δ = \min\{d(p_L, q_L), d(p_R, q_R)\} and let (p, q) be the pair of points that has distance δ
- But this may not be enough
 - Closest pair of points may involve one point from L and the other from R!

A clever geometric idea

Any pair of points p ∈ L and q ∈ R with d(p, q) < δ must lie in band

No two points can be in the same green box

Only need to check pairs of points up to 2 rows apart - At most a constant # of other points!
Closest Pair Recombining

- Sort points by y coordinate ahead of time
- On recombination only compare each point in δ-band of L ∪ R to the 11 points in δ-band of L ∪ R above it in the y sorted order
 - If any of those distances is better than δ replace (p,q) by the best of those pairs
- O(n log n) for x and y sorting at start
- Two recursive calls on problems on half size
- O(n) recombination
- Total O(n log n)

Sometimes two sub-problems aren’t enough

- More general divide and conquer
 - You’ve broken the problem into a different sub-problems
 - Each has size at most n/b
 - The cost of the break-up and recombing the sub-problem solutions is O(n^k)

Recurrence
- T(n) ≤ a·T(n/b)+c·n^k

Master Divide and Conquer Recurrence

- If T(n) ≤ a·T(n/b)+c·n^k for n>b then
 - if a>b^k then T(n) is Θ(n^log_a a)
 - if a<b^k then T(n) is Θ(n^k)
 - if a=b^k then T(n) is Θ(n^k log n)
- Works even if it is ⌊n/b⌋ instead of n/b.

Proving Master recurrence
Proving Master recurrence

Problem size

\[T(n) = a \cdot T(n/b) + c \cdot n^k \] # probs

\[n \]
\[n/b \]
\[n/b^2 \]
\[b \]
\[1 \]

\[T(1) = c \]

\[a \]
\[a^2 \]
\[a^d \]

\[d = \log_b n \]

Proving Master recurrence

Problem size

\[T(n) = a \cdot T(n/b) + c \cdot n^k \] # probs

\[n \]
\[n/b \]
\[n/b^2 \]
\[b \]
\[1 \]

\[T(1) = c \]

\[a \]
\[a^2 \]
\[a^d \]

\[c \cdot n^k \]

Geometric Series

- \(S = t + tr + tr^2 + \ldots + tr^{n-1} \)
- \(r \cdot S = tr + tr^2 + \ldots + tr^{n-1} + tr^n \)
- \((r-1)S = tr^n - t \)
- so \(S = t (r^n - 1)/(r-1) \) if \(r \neq 1 \).

Simple rule

- If \(r \neq 1 \) then \(S \) is a constant times largest term in series

Total Cost

- Geometric series
 - ratio \(a/b^k \)
 - \(d + 1 = \log_b n + 1 \) terms
 - first term \(cn^k \), last term \(ca^d \)
- If \(a/b^k = 1 \)
 - all terms are equal \(T(n) \) is \(\Theta(n^k \log n) \)
- If \(a/b^k < 1 \)
 - first term is largest \(T(n) \) is \(\Theta(n^k) \)
- If \(a/b^k > 1 \)
 - last term is largest \(T(n) \) is \(\Theta(a^d) = \Theta(a^{\log_b n}) = \Theta(n^{\log_b a}) \)
 (To see this take \(\log_b \) of both sides)
Multiplying Matrices

\[\begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} \\ b_{21} & b_{22} & b_{23} & b_{24} \\ b_{31} & b_{32} & b_{33} & b_{34} \\ b_{41} & b_{42} & b_{43} & b_{44} \end{bmatrix} = \begin{bmatrix} a_1 b_{11} & a_1 b_{12} & a_1 b_{13} & a_1 b_{14} \\ a_2 b_{21} & a_2 b_{22} & a_2 b_{23} & a_2 b_{24} \\ a_3 b_{31} & a_3 b_{32} & a_3 b_{33} & a_3 b_{34} \\ a_4 b_{41} & a_4 b_{42} & a_4 b_{43} & a_4 b_{44} \end{bmatrix} + \begin{bmatrix} a_1 b_{12} & a_1 b_{13} & a_1 b_{14} & a_1 b_{14} \\ a_2 b_{22} & a_2 b_{23} & a_2 b_{24} & a_2 b_{24} \\ a_3 b_{32} & a_3 b_{33} & a_3 b_{34} & a_3 b_{34} \\ a_4 b_{42} & a_4 b_{43} & a_4 b_{44} & a_4 b_{44} \end{bmatrix} = \begin{bmatrix} a_1 b_{11} + a_1 b_{12} + a_1 b_{13} + a_1 b_{14} \\ a_2 b_{21} + a_2 b_{22} + a_2 b_{23} + a_2 b_{24} \\ a_3 b_{31} + a_3 b_{32} + a_3 b_{33} + a_3 b_{34} \\ a_4 b_{41} + a_4 b_{42} + a_4 b_{43} + a_4 b_{44} \end{bmatrix} + \begin{bmatrix} a_1 b_{12} + a_1 b_{13} + a_1 b_{14} & a_1 b_{12} + a_1 b_{13} + a_1 b_{14} \\ a_2 b_{22} + a_2 b_{23} + a_2 b_{24} & a_2 b_{22} + a_2 b_{23} + a_2 b_{24} \\ a_3 b_{32} + a_3 b_{33} + a_3 b_{34} & a_3 b_{32} + a_3 b_{33} + a_3 b_{34} \\ a_4 b_{42} + a_4 b_{43} + a_4 b_{44} & a_4 b_{42} + a_4 b_{43} + a_4 b_{44} \end{bmatrix}
\]

- \(n^3\) multiplications, \(n^3-n^2\) additions
Multiplying Matrices

\[
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} & a_{14} \\
 a_{21} & a_{22} & a_{23} & a_{24} \\
 a_{31} & a_{32} & a_{33} & a_{34} \\
 a_{41} & a_{42} & a_{43} & a_{44}
\end{bmatrix}
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} & b_{14} \\
 b_{21} & b_{22} & b_{23} & b_{24} \\
 b_{31} & b_{32} & b_{33} & b_{34} \\
 b_{41} & b_{42} & b_{43} & b_{44}
\end{bmatrix}
= \begin{bmatrix}
 a_{11}b_{11}+a_{12}b_{21}+a_{13}b_{31}+a_{14}b_{41} \\
 a_{21}b_{11}+a_{22}b_{21}+a_{23}b_{31}+a_{24}b_{41} \\
 a_{31}b_{11}+a_{32}b_{21}+a_{33}b_{31}+a_{34}b_{41} \\
 a_{41}b_{11}+a_{42}b_{21}+a_{43}b_{31}+a_{44}b_{41}
\end{bmatrix}
\]

Simple Divide and Conquer

\[
\begin{bmatrix}
 A_{11} & A_{12} \\
 A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
 B_{11} & B_{12} \\
 B_{21} & B_{22}
\end{bmatrix}
= \begin{bmatrix}
 A_{11}B_{11}+A_{12}B_{21} & A_{11}B_{12}+A_{12}B_{22} \\
 A_{21}B_{11}+A_{22}B_{21} & A_{21}B_{12}+A_{22}B_{22}
\end{bmatrix}
\]

- \(T(n) = 8T(n/2) + 4(n/2)^2 = 8T(n/2) + n^2 \)
- \(8 > 2^2 \) so \(T(n) \) is \(\Theta(n^{\log_2 8}) = \Theta(n^3) \)

Strassen’s Divide and Conquer Algorithm

- Strassen’s algorithm
 - Multiply 2x2 matrices using 7 instead of 8 multiplications (and lots more than 4 additions)
 - \(T(n) = 7T(n/2) + cn^2 \)
 - \(7 > 2^2 \) so \(T(n) \) is \(\Theta(n^{\log_2 7}) \) which is \(O(n^{2.81...}) \)

- Fastest algorithms theoretically use \(O(n^{2.376}) \) time
 - not practical but Strassen’s is practical provided calculations are exact and we stop recursion when matrix has size somewhere between 10 and 100

The algorithm

\[
\begin{align*}
P_1 & \leftarrow A_{12}(B_{11} + B_{21}) ; & P_2 & \leftarrow A_{21}(B_{12} + B_{22}) \\
P_3 & \leftarrow (A_{11} - A_{12})B_{11} ; & P_4 & \leftarrow (A_{22} - A_{21})B_{22} \\
P_5 & \leftarrow (A_{22} - A_{12})(B_{21} - B_{22}) ; & P_6 & \leftarrow (A_{11} - A_{21})(B_{12} - B_{11}) \\
P_7 & \leftarrow (A_{21} - A_{12})(B_{11} + B_{22}).
\end{align*}
\]

\[
\begin{align*}
C_{11} & \leftarrow P_1 + P_3 ; & C_{12} & \leftarrow P_2 + P_3 + P_6 - P_7 \\
C_{21} & \leftarrow P_1 + P_4 + P_5 + P_7 ; & C_{22} & \leftarrow P_2 + P_4
\end{align*}
\]
Another Divide & Conquer Example: Multiplying Faster

If you analyze our usual grade school algorithm for multiplying numbers

- $\Theta(n^2)$ time
- On real machines each “digit” is, e.g., 32 bits long but still get $\Theta(n^2)$ running time with this algorithm when run on n-bit multiplication

We can do better!

- We’ll describe the basic ideas by multiplying polynomials rather than integers
- Advantage is we don’t get confused by worrying about carries at first

Notes on Polynomials

These are just formal sequences of coefficients

- when we show something multiplied by x^k it just means shifted k places to the left – basically no work

Usual polynomial multiplication

<table>
<thead>
<tr>
<th>4x^2 + 2x + 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>x^2 - 3x + 1</td>
</tr>
</tbody>
</table>

Polynomial Multiplication

- Given:
 - Degree n-1 polynomials P and Q
 - $P = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-2}x^{n-2} + a_{n-1}x^{n-1}$
 - $Q = b_0 + b_1 x + b_2 x^2 + \ldots + b_{n-2}x^{n-2} + b_{n-1}x^{n-1}$

- Compute:
 - Degree 2n-2 Polynomial PQ
 - $PQ = a_0b_0 + (a_0b_1+a_1b_0)x + (a_0b_2+a_1b_1+a_2b_0)x^2 + \ldots + (a_{n-2}b_{n-1}+a_{n-1}b_{n-2})x^{2n-3} + a_{n-1}b_{n-1}x^{2n-2}$

- Obvious Algorithm:
 - Compute all $a_i b_j$ and collect terms
 - $\Theta(n^2)$ time

Naive Divide and Conquer

- Assume $n=2k$
 - $P = (a_0 + a_1 x + a_2 x^2 + \ldots + a_k x^k + a_{k+1} x^{k+1}) + (a_k + a_{k+1} x + \ldots + a_{n-2}x^{k-2} + a_{n-1}x^{k-1})x^k = P_0 + P_1 x^k$ where P_0 and P_1 are degree $k-1$ polynomials
 - Similarly $Q = Q_0 + Q_1 x^k$
 - $PQ = (P_0+P_1x^k)(Q_0+Q_1x^k)$
 - $P_0Q_0 + (P_1Q_0 + P_0Q_1)x^k + P_1Q_1x^{2k}$

- 4 sub-problems of size $k=n/2$ plus linear combining
 - $T(n)=4T(n/2)+cn$ Solution $T(n) = \Theta(n^2)$
Karatsuba’s Algorithm

- A better way to compute the terms
 - Compute
 - \(A \leftarrow P_0Q_0 \)
 - \(B \leftarrow P_1Q_1 \)
 - \(C \leftarrow (P_0 + P_1)(Q_0 + Q_1) = P_0Q_0 + P_1Q_0 + P_0Q_1 + P_1Q_1 \)
 - Then
 - \(P_0Q_1 + P_1Q_0 = C - A - B \)
 - So \(PQ = A + (C - A - B)x^k + Bx^{2k} \)
- 3 sub-problems of size \(n/2 \) plus \(O(n) \) work
 - \(T(n) = 3T(n/2) + cn \)
 - \(T(n) = O(n^\alpha) \) where \(\alpha = \log_2 3 \approx 1.59... \)

Karatsuba: Details

PolyMul(P, Q):

```
// P, Q are length n = 2k vectors, with P[i], Q[i] being
// the coefficient of x^i in polynomials P, Q respectively.
// Let Pzero be elements 0..k-1 of P; Pone be elements k..n-1
// Qzero, Qone : similar
if n=1 then Return(P[0]*Q[0]) else
  A ← PolyMul(Pzero, Qzero); // result is a (2k-1)-vector
  B ← PolyMul(Pone, Qone);  // ditto
  Psum ← Pzero + Pone;      // add corresponding elements
  Qsum ← Qzero + Qone;      // ditto
  C ← polyMul(Psum, Qsum); // another (2k-1)-vector
  Mid ← C – A – B;         // subtract correspond elements
  R ← A + Shift(Mid, n/2) + Shift(B, n) // a (2n-1)-vector
  Return( R);```

Multiplication

- Polynomials
  - Naïve: \( \Theta(n^2) \)
  - Karatsuba: \( \Theta(n^{1.59...}) \)
  - Best known: \( \Theta(n \log n) \)
    - ”Fast Fourier Transform”
    - FFT widely used for signal processing
- Integers
  - Similar, but some ugly details re: carries, etc. due to
    Schonhage-Strassen in 1971 gives \( \Theta(n \log n \log \log n) \)
  - Improvement in 2007 due to Furer gives \( \Theta(n \log n 2^{\log^* n}) \)
  - Used in practice in symbolic manipulation systems like Maple

Hints towards FFT: Interpolation

```
Given set of values at 5 points```

37 38 39 40
Hints towards FFT: Interpolation

Given set of values at 5 points
Can find unique degree 4 polynomial going through these points

Multiplying Polynomials by Evaluation & Interpolation

- Any degree $n-1$ polynomial $R(y)$ is determined by $R(y_0), \ldots, R(y_{n-1})$ for any n distinct y_0, \ldots, y_{n-1}
- To compute PQ (assume degree at most $n-1$)
 - Evaluate $P(y_0), \ldots, P(y_{n-1})$
 - Evaluate $Q(y_0), \ldots, Q(y_{n-1})$
 - Multiply values $P(y_i)Q(y_i)$ for $i=0,\ldots,n-1$
 - Interpolate to recover PQ

Interpolation

- Given values of degree $n-1$ polynomial R at n distinct points y_0, \ldots, y_{n-1}
 - $R(y_0), \ldots, R(y_{n-1})$
- Compute coefficients c_0, \ldots, c_{n-1} such that
 - $R(x)=c_0+c_1x+c_2x^2+\ldots+c_{n-1}x^{n-1}$
- System of linear equations in c_0, \ldots, c_{n-1}
 - $c_0+y_0^2+\ldots+y_0^{n-1}=R(y_0)$ known
 - $c_0+y_1^2+\ldots+y_1^{n-1}=R(y_1)$
 - \ldots unknown
 - $c_0+y_{n-1}^2+\ldots+y_{n-1}^{n-1}=R(y_{n-1})$

Interpolation: n equations in n unknowns

- Matrix form of the linear system
 $$\begin{bmatrix}1 & y_0 & y_0^2 & \ldots & y_0^{n-1} \\ 1 & y_1 & y_1^2 & \ldots & y_1^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & y_{n-1} & y_{n-1}^2 & \ldots & y_{n-1}^{n-1}\end{bmatrix}\begin{bmatrix}c_0 \\ c_1 \\ \vdots \\ c_{n-1}\end{bmatrix}=\begin{bmatrix}R(y_0) \\ R(y_1) \\ \vdots \\ R(y_{n-1})\end{bmatrix}$$
- Fact: Determinant of the matrix is $\prod_{i<j} (y_i-y_j)$ which is not 0 since points are distinct
 - System has a unique solution c_0, \ldots, c_{n-1}
Hints towards FFT: Evaluation & Interpolation

- Evaluation of polynomial at 1 point takes $O(n)$ time
 - So 2n points (naively) takes $O(n^2)$—no savings
 - But the algorithm works no matter what the points are...
- So...choose points that are related to each other so that evaluation problems can share subproblems

Karatsuba’s algorithm and evaluation and interpolation

- Strassen gave a way of doing 2x2 matrix multiplies
- Karatsuba’s algorithm can be thought of as a way of multiplying degree 1 polynomials (which have 2 coefficients) using fewer multiplications
 - $PQ = (P_0 + P_1 z)(Q_0 + Q_1 z)
 = P_0 Q_0 + (P_0 + P_1)(Q_0 + Q_1)z + P_1 Q_1 z^2$
- Evaluate at 0,1,-1 (Could also use other points)
 - $A = P(0)Q(0) = P_0 Q_0$
 - $C = P(1)Q(1) = P_0 + P_1(Q_0 + Q_1)$
 - $D = P(-1)Q(-1) = (P_0 - P_1)(Q_0 - Q_1)$
- Interpolating, Karatsuba’s $Mid = (C-D)/2$ and $B = (C+D)/2 - A$

Evaluation at Special Points

- Evaluation of polynomial at 1 point
- So 2n points (naively) takes $O(n^2)$—no savings
- But the algorithm works no matter what the points are...
- So...choose points that are related to each other so that evaluation problems can share subproblems

The key idea: Evaluate at related points

- $P(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 +...+ a_{n-1} x^{n-1}$
 - $= a_0 + a_2 x^2 + a_4 x^4 +...+ a_{n-2} x^{n-2}$
 - $+ a_1 x + a_3 x^3 + a_5 x^5 +...+ a_{n-1} x^{n-1}$
 - $= P_{even}(x^2) + x P_{odd}(x^2)$

- $P(-x) = a_0 - a_1 x + a_2 x^2 - a_3 x^3 + a_4 x^4 -...- a_{n-1} x^{n-1}$
 - $= a_0 + a_2 x^2 + a_4 x^4 +...+ a_{n-2} x^{n-2}$
 - $- (a_1 x + a_3 x^3 + a_5 x^5 +...+ a_{n-1} x^{n-1})$
 - $= P_{even}(x^2) - x P_{odd}(x^2)$

where $P_{even}(x) = a_0 + a_2 x + a_4 x^2 +...+ a_{n-2} x^{n-2-1}$

and $P_{odd}(x) = a_1 + a_3 x + a_5 x^2 +...+ a_{n-1} x^{n-2-1}$
The key idea:
Evaluate at related points

- So... if we have half the points as negatives of the other half
 - i.e., \(y_{n/2} = -y_0, y_{n/2+1} = -y_1, \ldots, y_{n-1} = -y_{n/2-1} \)
then we can reduce the size \(n \) problem of evaluating degree \(n-1 \) polynomial \(P \) at \(n \) points to evaluating 2 degree \(n/2 - 1 \) polynomials \(P_{\text{even}} \) and \(P_{\text{odd}} \) at \(n/2 \) points \(y_0^2, y_{n/2}^2 \) and recombine answers with \(O(1) \) extra work per point

- But to use this idea recursively we need half of \(y_0^2, y_{n/4}, \ldots, y_{n/2-1}^2 \) to be negatives of the other half
 - If \(y_{n/4}^2 = -y_0^2 \), say, then \((y_{n/4}/y_0)^2 = -1 \)
- Motivates use of complex numbers as evaluation points

\[e^{2\pi i} = 1 \]
\[e^{\pi i} = -1 \]

Complex Numbers

\[i^2 = -1 \]

To multiply complex numbers:
1. add angles
2. multiply lengths
 (all length 1 here)
\[a+bi = (a+bi)(c+di) \]
\[e^{\theta i} = \cos \theta + i \sin \theta = e^{\theta \pi i} \]
\[c+di = \cos \phi + i \sin \phi = e^{\phi \pi i} \]
\[e^{\theta i} = \cos (\theta + \phi) + i \sin (\theta + \phi) = e^{(\theta + \phi) \pi i} \]

Primitive n\(^{th}\) root of 1 \(\omega = \omega_n = e^{i2\pi/n} \)

- Let \(\omega = \omega_n = e^{i2\pi/n} = \cos \left(\frac{2\pi n}{n}\right) + i \sin \left(\frac{2\pi n}{n}\right) \)
- \(\omega^2 = i \)
- \(\omega^3 = \omega \)
- \(\omega^4 = -1 \)
- \(\omega^5 = \omega^0 = 1 = \omega^8 \)
- \(\omega^6 = -i \)
- \(\omega^7 \)

\(\rho^2 = -1 \)
\(e^{2\pi i} = 1 \)

Facts about \(\omega = e^{2\pi i/n} \) for even n

- \(\omega = e^{2\pi i/n}, i = \sqrt{-1} \)
- \(\omega^n = 1 \)
- \(\omega^{n/2} = -1 \)
- \(\omega^{n/2+k} = -\omega^k \) for all values of \(k \)
- \(\omega^2 = \omega^{2\pi i/m} \) where \(m = n/2 \)
- \(\omega^k = \cos(2k\pi/n) + i \sin(2k\pi/n) \) so can compute with powers of \(\omega \)
- \(\omega^k \) is a root of \(x^{n-1} = (x-1)(x^{n-1}+x^{n-2}+\ldots+1) = 0 \)
 but for \(k \neq 0 \), \(\omega^k \neq 1 \) so \(\omega^k(n-1)+\omega^k(n-2)+\ldots+1 = 0 \)
The key idea for n even

- $P(\omega) = a_0 + a_1 \omega + a_2 \omega^2 + a_3 \omega^3 + a_4 \omega^4 + \ldots + a_{n-1} \omega^{n-1}$

 $= a_0 + a_2 \omega^2 + a_4 \omega^4 + \ldots + a_{n-2} \omega^{n-2}$

 $+ a_1 \omega + a_3 \omega^3 + a_5 \omega^5 + \ldots + a_{n-1} \omega^{n-1}$

$= P_{\text{even}}(\omega^2) + \omega P_{\text{odd}}(\omega^2)$

- $P(-\omega) = a_0 - a_1 \omega + a_2 \omega^2 - a_3 \omega^3 + a_4 \omega^4 - \ldots - a_{n-1} \omega^{n-1}$

 $= a_0 + a_2 \omega^2 + a_4 \omega^4 + \ldots + a_{n-2} \omega^{n-2}$

 $- (a_1 \omega + a_3 \omega^3 + a_5 \omega^5 + \ldots + a_{n-1} \omega^{n-1})$

$= P_{\text{even}}(\omega^2) - \omega P_{\text{odd}}(\omega^2)$

where $P_{\text{even}}(x) = a_0 + a_2 x + a_4 x^2 + \ldots + a_{n-2} x^{n/2-1}$

and $P_{\text{odd}}(x) = a_1 + a_3 x + a_5 x^2 + \ldots + a_{n-1} x^{n/2-1}$

Analysis and more

- Run-time

 $T(n) = 2 \cdot T(n/2) + cn$ so $T(n) = O(n \log n)$

- So much for evaluation ... what about interpolation?

 - Given

 $r_0 = R(1), \ r_1 = R(\omega), \ r_2 = R(\omega^2), \ldots, \ r_{n-1} = R(\omega^{n-1})$

 - Compute

 $c_0, \ c_1, \ldots, c_{n-1}$ s.t. $R(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1}$

The recursive idea for n a power of 2

- Goal:

 Evaluate P at $1, \omega, \omega^2, \ldots, \omega^{n-1}$

- Now

 P_{even} and P_{odd} have degree $n/2-1$ where

 $P(\omega^k) = P_{\text{even}}(\omega^{2k}) + \omega^k P_{\text{odd}}(\omega^{2k})$

 $P(-\omega^k) = P_{\text{even}}(\omega^{2k}) - \omega^k P_{\text{odd}}(\omega^{2k})$

- Recursive Algorithm

 - Evaluate P_{even} at $1, \omega^2, \omega^4, \ldots, \omega^{n-2}$

 - Evaluate P_{odd} at $1, \omega^2, \omega^4, \ldots, \omega^{n-2}$

 - Combine to compute P at $1, \omega, \omega^2, \ldots, \omega^{n/2-1}$

 - Combine to compute P at $-1, -\omega, -\omega^2, \ldots, -\omega^{n/2-1}$

 (i.e. at $\omega^{n/2}, \omega^{n/2+1}, \omega^{n/2+2}, \ldots, \omega^{n-1}$)

Interpolation \approx Evaluation: strange but true

- Weird fact:

 If we define a new polynomial

 $S(x) = r_0 + r_1 x + r_2 x^2 + \ldots + r_{n-1} x^{n-1}$

 where $r_0, r_1, \ldots, r_{n-1}$ are the evaluations of R at $1, \omega, \ldots, \omega^{n-1}$

 Then $c_k = S(\omega^k)/n$ for $k = 0, \ldots, n-1$

- So...

 evaluate S at $1, \omega^1, \omega^2, \ldots, \omega^{(n-1)}$ then divide each answer by n to get the c_0, \ldots, c_{n-1}

 ω^1 behaves just like ω did so the same $O(n \log n)$ evaluation algorithm applies!
Divide and Conquer Summary

- Powerful technique, when applicable
- Divide large problem into a few smaller problems of the same type
- Choosing sub-problems of roughly equal size is usually critical
- Examples:
 - Merge sort, quicksort (sort of), polynomial multiplication, FFT, Strassen's matrix multiplication algorithm, powering, binary search, root finding by bisection, …

Why this is called the discrete Fourier transform

- Real Fourier series
 - Given a real valued function f defined on $[0,2\pi]$ the Fourier series for f is given by
 \[f(x) = a_0 + a_1 \cos(x) + a_2 \cos(2x) + ... + a_m \cos(mx) + ... \]
 where
 \[
 a_m = \frac{1}{2\pi} \int_0^{2\pi} f(x) \cos(mx) \, dx
 \]
 - is the component of f of frequency m
 - In signal processing and data compression one ignores all but the components with large a_m and there aren’t many since

- Complex Fourier series
 - Given a function f defined on $[0,2\pi]$ the complex Fourier series for f is given by
 \[f(z) = b_0 + b_1 e^{iz} + b_2 e^{2iz} + ... + b_m e^{miz} + ... \]
 where
 \[
 b_m = \frac{1}{2\pi} \int_0^{2\pi} f(z) e^{-miz} \, dz
 \]
 - is the component of f of frequency m
 - If we discretize this integral using values at n equally spaced points between 0 and 2π we get
 \[
 b_m = \frac{1}{n} \sum_{k=0}^{n-1} f_k e^{-2k\pi i/n} = \frac{1}{n} \sum_{k=0}^{n-1} f_k \omega^{-km} \text{ where } f_k = f(2k\pi/n)
 \]
 just like interpolation!
Today

- Divide and conquer examples
 - Simple, randomized median algorithm
 - Expected $O(n)$ time
 - Not so simple, deterministic median algorithm
 - Worst case $O(n)$ time
 - Expected time analysis for Randomized QuickSort
 - Expected $O(n \log n)$ time

Order problems: Find the k^{th} largest

- Runtime models
 - Machine Instructions
 - Comparisons
- Maximum
 - $O(n)$ time
 - $n-1$ comparisons
- 2nd Largest
 - $O(n)$ time
 - $?$ comparisons

Median Problem

- k^{th} largest for $k = n/2$
- Easily done in $O(n \log n)$ time with sorting
 - How can the problem be solved in $O(n)$ time?
- Select(k, n) – find the k-th smallest from a list of length n

Divide and Conquer

- $T(n) = n + T(\alpha n)$ for $\alpha < 1$
- Linear time solution
- Select algorithm – in linear time, reduce the problem from selecting the k-th largest of n to the j-th smallest of αn, for $\alpha < 1$
Quick Select

QSelect(\(k, S\))
Choose element \(x\) from \(S\)
\(S_L = \{y \in S \mid y < x\}\)
\(S_E = \{y \in S \mid y = x\}\)
\(S_G = \{y \in S \mid y > x\}\)

if \(|S_L| \geq k\)
 return QSelect(\(k, S_L\))
else if \(|S_L| + |S_E| \geq k\)
 return \(x\)
else
 return QSelect(\(k - |S_L| - |S_E|, S_G\))

Implementing “Choose an element \(x\)”

- Ideally, we would choose an \(x\) in the middle, to reduce both sets in half and guarantee progress
- Method 1
 - Select an element at random
- Method 2
 - BFPRT Algorithm
 - Select an element by a complicated, but linear time method that guarantees a good split

Random Selection

Consider a call to QSelect(\(k, S\)), and let \(S'\) be the elements passed to the recursive call.

With probability at least \(\frac{1}{2}\), \(|S'| < \frac{3}{4}|S|\)

↑ bad \(x\) ↑ good \(x\) ↑ good \(x\) ↑ bad \(x\)

elements of \(S\) listed in sorted order

⇒ On average only 2 recursive calls before the size of \(S'\) is at most \(3n/4\)

Expected runtime is \(O(n)\)

- Given \(x\), one pass over \(S\) to determine \(S_L, S_E,\) and \(S_G\) and their sizes: \(cn\) time.
 - Expect \(2cn\) cost before size of \(S'\) drops to at most \(3|S|/4\)

- Let \(T(n)\) be the expected running time
 - \(T(n) \leq T(3n/4) + 2cn\)
 \(\leq 2cn + (\frac{3}{4}) 2cn + (\frac{3}{4})^2 2cn + \ldots\)
 \(\leq 2cn (1 + (\frac{3}{4}) + (\frac{3}{4})^2 + \ldots)\)
Making the algorithm deterministic

- In $O(n)$ time, find an element that guarantees that the larger set in the split has size at most $\frac{3}{4}n$

Blum-Floyd-Pratt-Rivest-Tarjan Algorithm

- Divide S into $n/5$ sets of size 5
- Sort each of these sets of size 5
- Let M be the set of all medians of the sets of size 5
- Let x be the median of M
- $S_L = \{y \in S \mid y < x\}$, $S_G = \{y \in S \mid y > x\}$
- Claim: $|S_L| < \frac{3}{4}|S|$, $|S_G| < \frac{3}{4}|S|$

BFPRT, Step 1: Construct sets of size 5, sort each set

BFPRT, Step 2: Find median of column medians

<table>
<thead>
<tr>
<th>95</th>
<th>86</th>
<th>81</th>
<th>81</th>
<th>69</th>
<th>91</th>
<th>98</th>
<th>51</th>
<th>77</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>65</td>
<td>62</td>
<td>73</td>
<td>47</td>
<td>81</td>
<td>96</td>
<td>36</td>
<td>17</td>
</tr>
<tr>
<td>15</td>
<td>45</td>
<td>52</td>
<td>32</td>
<td>9</td>
<td>42</td>
<td>91</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>41</td>
<td>25</td>
<td>8</td>
<td>25</td>
<td>64</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>5</td>
<td>32</td>
<td>12</td>
<td>7</td>
<td>18</td>
<td>6</td>
<td>11</td>
<td>5</td>
</tr>
</tbody>
</table>
BFPRT Recurrence

- Sorting all \(n/5 \) lists of size 5
 - \(cn \) time

- Finding median of set \(M \) of medians
 - Recursive computation: \(T(n/5) \)

- Computing sets \(S_L, S_E, S_G \) and \(S' \)
 - \(c'n \) time

- Solving selection problem on \(S' \)
 - Recursive computation: \(T(3n/4) \) since \(|S'| \leq \frac{3}{4} n \)

\[T(n) \leq cn + T(n/5) + T(3n/4) \] is \(O(n) \)

- Key property
 - \(3/4 + 1/5 < 1 \) (The sum is \(19/20 \))

- Sum of problem sizes decreases by \(19/20 \) factor per level of recursion

- Overhead per level is linear in the sum of the problem sizes
 - Overhead decreases by \(19/20 \) factor per level of recursion
 - Total overhead is linear (sum of geometric series with constant ratio and linear largest term)

Quick Sort

QuickSort(\(S \))

 if \(S \) is empty, return
 Choose element \(x \) from \(S \) "pivot"
 \(S_L = \{ y \ in \ S \mid y < x \} \)
 \(S_E = \{ y \ in \ S \mid y = x \} \)
 \(S_G = \{ y \ in \ S \mid y > x \} \)
 return [QuickSort(\(S_L \)), \(S_E \), QuickSort(\(S_G \))]
Expected run time for QuickSort:

“Global analysis”

- Count comparisons
- \(a_i, a_j \) – elements in positions \(i \) and \(j \) in the **final** sorted list. \(p_{ij} \) the probability that \(a_i \) and \(a_j \) are compared
- Expected number of comparisons:

\[
\sum_{i<j} p_{ij}
\]

Lemma: \(P_{ij} \leq \frac{2}{(j-i+1)} \)

If \(a_i \) and \(a_j \) are compared then it must be during the call when they end up in different subproblems

- Before that, they aren’t compared to each other
- After they aren’t compared to each other

During this step they are only compared if one of them is the pivot

Since all elements between \(a_i \) and \(a_j \) are also in the subproblem this is 2 out of at least \(j-i+1 \) choices

Average runtime is \(2n \ln n \)

\[
\sum_{i<j} p_{ij} \leq \sum_{i<j} \frac{2}{(j-i+1)} \quad \text{write } j=k+i
\]

\[
= 2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{(k+1)}
\]

\[
\leq 2(n-1)(H_n-1)
\]

where \(H_n=1+1/2+1/3+1/4+...+1/n \)

\[
= \ln n + O(1)
\]

\[
\leq 2n \ln n + O(n) \leq 1.387n \log_2 n
\]