CSE 421
Algorithms:
Divide and Conquer

Summer 2011
Larry Ruzzo

Thanks to Paul Beame, James Lee, Kevin Wayne for some slides
Plotting Time/(growth rate) vs n may be more sensitive – should be flat, but small n may be unrepresentative of asymptotics.

Plot Time vs n
Fit curve to it (e.g., with Excel)
Note: Higher degree polynomials fit better…
biconnected components: time vs #edges
algorithm design paradigms: divide and conquer

Outline:

General Idea

Review of Merge Sort

Why does it work?
 Importance of balance
 Importance of super-linear growth

Some interesting applications
 Closest points
 Integer Multiplication

Finding & Solving Recurrences
algorithm design techniques

Divide & Conquer

Reduce problem to one or more sub-problems of the same type

Typically, each sub-problem is at most a constant fraction of the size of the original problem

Subproblems typically disjoint

Often gives significant, usually polynomial, speedup

Examples:

- Mergesort, Binary Search, Strassen’s Algorithm,
- Quicksort (roughly)
MS(A: array[1..n]) returns array[1..n] {
 If(n=1) return A;
 New U:array[1:n/2] = MS(A[1..n/2]);
 New L:array[1:n/2] = MS(A[n/2+1..n]);
 Return(Merge(U,L));
}

Merge(U,L: array[1..n]) {
 New C: array[1..2n];
 a=1; b=1;
 For i = 1 to 2n
 C[i] = “smaller of U[a], L[b] and correspondingly a++ or b++”;
 Return C;
}
why balanced subdivision?

Alternative "divide & conquer" algorithm:
Sort n-1
Sort last 1
Merge them

\[T(n) = T(n-1) + T(1) + 3n \quad \text{for } n \geq 2 \]
\[T(1) = 0 \]
Solution: \(3n + 3(n-1) + 3(n-2) \ldots = \Theta(n^2) \)
Suppose we've already invented DumbSort, taking time n^2

Try *Just One Level* of divide & conquer:

- DumbSort(first $n/2$ elements)
- DumbSort(last $n/2$ elements)
- Merge results

Time: $2 \cdot (n/2)^2 + n = n^2/2 + n \ll n^2$

Almost twice as fast!
Moral 1: “two halves are better than a whole”

Two problems of half size are better than one full-size problem, even given $O(n)$ overhead of recombining, since the base algorithm has super-linear complexity.

Moral 2: “If a little's good, then more's better”

Two levels of D&C would be almost 4 times faster, 3 levels almost 8, etc., even though overhead is growing. Best is usually full recursion down to some small constant size (balancing "work" vs "overhead"). In the limit: you’ve just rediscovered mergesort!
Moral 3: unbalanced division less good:

$$(.1n)^2 + (.9n)^2 + n = .82n^2 + n$$

The 18% savings compounds significantly if you carry recursion to more levels, actually giving $O(n \log n)$, but with a bigger constant. So worth doing if you can’t get 50-50 split, but balanced is better if you can.

This is intuitively why Quicksort with random splitter is good – badly unbalanced splits are rare, and not instantly fatal.

$$(1)^2 + (n-1)^2 + n = n^2 - 2n + 2 + n$$

Little improvement here.
Mergesort: (recursively) sort 2 half-lists, then merge results.

\[T(n) = 2T(n/2) + cn, \quad n \geq 2 \]
\[T(1) = 0 \]

Solution: \(\Theta(n \log n) \)
(details later)
A Divide & Conquer Example:
Closest Pair of Points
closest pair of points: non-geometric version

Given \(n \) points and *arbitrary* distances between them, find the closest pair. (E.g., think of distance as airfare – definitely not Euclidean distance!)

Must look at all \(\binom{n}{2} \) pairwise distances, else any one you didn’t check might be the shortest.

Also true for Euclidean distance in 1-2 dimensions?
Given n points on the real line, find the closest pair

Closest pair is *adjacent* in ordered list
Time $O(n \log n)$ to sort, if needed
Plus $O(n)$ to scan adjacent pairs
Key point: do *not* need to calc distances between all pairs: exploit geometry + ordering
Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.
- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. $O(n \log n)$ easy if points are on a line.

Assumption. No two points have same x coordinate.

Just to simplify presentation
closest pair of points. 2d, Euclidean distance: 1st try

Divide. Sub-divide region into 4 quadrants.
closest pair of points: 1st try

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.
Algorithm.

Divide: draw vertical line L with $\approx n/2$ points on each side.
Algorithm.
Divide: draw vertical line L with $\approx n/2$ points on each side.
Conquer: find closest pair on each side, recursively.
Algorithm.

Divide: draw vertical line L with $\approx n/2$ points on each side.
Conquer: find closest pair on each side, recursively.
Combine: find closest pair with one point in each side.
Return best of 3 solutions.
Find closest pair with one point in each side, \textit{assuming} distance $< \delta$.

$\delta = \min(12, 21)$
closest pair of points

Find closest pair with one point in each side, assuming distance < δ.

Observation: suffices to consider points within δ of line L.

\[\delta = \min(12, 21) \]
Find closest pair with one point in each side, assuming distance $< \delta$.

Observation: suffices to consider points within δ of line L.

Almost the one-D problem again: Sort points in 2δ-strip by their y coordinate.

$\delta = \min(12, 21)$
Find closest pair with one point in each side, *assuming* distance < \(\delta \).

Observation: suffices to consider points within \(\delta \) of line \(L \).

Almost the one-D problem again: Sort points in 2\(\delta \)-strip by their y coordinate. Only check pts within 8 in sorted list!

\[\delta = \min(12, 21) \]
Def. Let s_i have the i^{th} smallest y-coordinate among points in the 2δ-width-strip.

Claim. If $|i - j| > 8$, then the "distance between s_i and s_j" is $> \delta$.

Pf: No two points lie in the same $\frac{1}{2}\delta$-by-$\frac{1}{2}\delta$ box:

$$\sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \sqrt{\frac{1}{2}} = \frac{\sqrt{2}}{2} \approx 0.7 < 1$$

only 8 boxes within $\pm\delta$ of $y(s_i)$.

...
Closest-Pair(p_1, \ldots, p_n) {
 if($n \leq ?$) return $?$

 Compute separation line L such that half the points are on one side and half on the other side.

 $\delta_1 = \text{Closest-Pair(left half)}$
 $\delta_2 = \text{Closest-Pair(right half)}$
 $\delta = \min(\delta_1, \delta_2)$

 Delete all points further than δ from separation line L

 Sort remaining points $p[1]\ldots p[m]$ by y-coordinate.

 for $i = 1..m$
 $k = 1$
 while $i+k \leq m \&\& p[i+k].y < p[i].y + \delta$
 $\delta = \min(\delta, \text{distance between } p[i] \text{ and } p[i+k])$;
 $k++$;

 return δ.
}
Analysis, I: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$D(n) \leq \begin{cases} 0 & n = 1 \\ 2D(n/2) + 7n & n > 1 \end{cases} \Rightarrow D(n) = O(n \log n)$$

BUT – that’s only the number of distance calculations

What if we counted comparisons?
Analysis, II: Let $C(n)$ be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $n \geq 1$ points

$$C(n) \leq \begin{cases} 0 & n = 1 \\ 2C(n/2) + O(n \log n) & n > 1 \end{cases} \Rightarrow C(n) = O(n \log^2 n)$$

Q. Can we achieve $O(n \log n)$?

A. Yes. Don't sort points from scratch each time.
 Sort by x at top level only.
 Each recursive call returns a list of all points sorted by y.
 Sort by merging two pre-sorted lists.

$$T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$
Going From Code to Recurrence
Carefully define what you’re counting, and \textit{write it down}!

“Let $C(n)$ be the number of comparisons between sort keys used by \texttt{MergeSort} when sorting a list of length $n \geq 1$”

In code, clearly separate \textit{base case} from \textit{recursive case}, highlight \textit{recursive calls}, and \textit{operations being counted}.

Write Recurrence(s)
merge sort

MS(A: array[1..n]) returns array[1..n] {
 If(n=1) return A;
 New L:array[1:n/2] = MS(A[1..n/2]);
 New R:array[1:n/2] = MS(A[n/2+1..n]);
 Return(Merge(L,R));
}

Merge(A,B: array[1..n]) {
 New C: array[1..2n];
 a=1; b=1;
 For i = 1 to 2n {
 C[i] = “smaller of A[a], B[b] and a++ or b++”;
 Return C;
 }
}
The recurrence

\[C(n) = \begin{cases}
0 & \text{if } n = 1 \\
2C(n/2) + (n - 1) & \text{if } n > 1
\end{cases} \]

Total time: proportional to \(C(n) \)
(loops, copying data, parameter passing, etc.)
going from code to recurrence

Carefully define what you’re counting, and write it down!

“Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points”

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted.

Write Recurrence(s)
Closest-Pair algorithm

Closest-Pair(p_1, ..., p_n) {
 if(n <= 1) return ∞
 Compute separation line L such that half the points are on one side and half on the other side.
 \[δ_1 = \text{Closest-Pair(left half)} \]
 \[δ_2 = \text{Closest-Pair(right half)} \]
 \[δ = \min(δ_1, δ_2) \]
 Delete all points further than \(δ \) from separation line L
 Sort remaining points p[1]...p[m] by y-coordinate.
 for i = 1..m
 k = 1
 while i+k <= m &\& p[i+k].y < p[i].y + δ
 \[δ = \min(δ, \text{distance between } p[i] \text{ and } p[i+k]) \]
 k++;
 return δ.
}
Analysis, I: Let $D(n)$ be the number of pairwise distance calculations in the Closest-Pair Algorithm when run on $n \geq 1$ points.

\[
D(n) \leq \begin{cases}
0 & n = 1 \\
2D(n/2) + 7n & n > 1
\end{cases} \quad \Rightarrow \quad D(n) = O(n \log n)
\]

BUT – that’s only the number of distance calculations.

What if we counted comparisons?
Carefully define what you’re counting, and write it down!

“Let $D(n)$ be the number of comparisons between coordinates/distances in the Closest-Pair Algorithm when run on $n \geq 1$ points”

In code, clearly separate base case from recursive case, highlight recursive calls, and operations being counted. Write Recurrence(s)
Closest-Pair(p₁, ..., pₙ) {
 if(n <= 1) return ∞

 Compute separation line L such that half the points are on one side and half on the other side.

 $\delta_1 = \text{Closest-Pair(left half)}$
 $\delta_2 = \text{Closest-Pair(right half)}$
 $\delta = \min(\delta_1, \delta_2)$

 Delete all points further than δ from separation line L

 Sort remaining points $p[1]...p[m]$ by y-coordinate.

 for $i = 1..m$
 $k = 1$
 while $i+k <= m$ && $p[i+k].y < p[i].y + \delta$
 $\delta = \min(\delta, \text{distance between } p[i] \text{ and } p[i+k])$
 $k++$;
 return δ.
}
Analysis, II: Let $C(n)$ be the number of comparisons of coordinates/distances in the Closest-Pair Algorithm when run on $n \geq 1$ points.

$$C(n) \leq \begin{cases} 0 & n = 1 \\ 2C(n/2) + O(n \log n) & n > 1 \end{cases} \Rightarrow C(n) = O(n \log^2 n)$$

Q. Can we achieve time $O(n \log n)$?

A. Yes. Don't sort points from scratch each time.
 Sort by x at top level only.
 Each recursive call returns δ and list of all points sorted by y
 Sort by merging two pre-sorted lists.

$$T(n) \leq 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$
Integer Multiplication
Add. Given two n-bit integers a and b, compute $a + b$.

$O(n)$ bit operations.
integer arithmetic

Add. Given two n-bit integers a and b, compute a + b.

\[O(n^2) \text{ bit operations.} \]

Multiply. Given two n-bit integers a and b, compute a \times b.

The “grade school” method:

\[\Theta(n^2) \text{ bit operations.} \]
To multiply two 2-digit integers:

Multiply four 1-digit integers.

Add, shift some 2-digit integers to obtain result.

\[
x = 10 \cdot x_1 + x_0
\]
\[
y = 10 \cdot y_1 + y_0
\]
\[
xy = (10 \cdot x_1 + x_0)(10 \cdot y_1 + y_0)
\]
\[
= 100 \cdot x_1y_1 + 10 \cdot (x_1y_0 + x_0y_1) + x_0y_0
\]

Same idea works for long integers – can split them into 4 half-sized ints
divide & conquer multiplication: warmup

To multiply two n-bit integers:

Multiply four \(\frac{n}{2}\)-bit integers.
Add two \(\frac{n}{2}\)-bit integers, and shift to obtain result.

\[
\begin{align*}
x &= 2^{n/2} \cdot x_1 + x_0 \\
y &= 2^{n/2} \cdot y_1 + y_0 \\
xy &= \left(2^{n/2} \cdot x_1 + x_0\right) \left(2^{n/2} \cdot y_1 + y_0\right) \\
&= 2^n \cdot x_1y_1 + 2^{n/2} \cdot \left(x_1y_0 + x_0y_1\right) + x_0y_0
\end{align*}
\]

\[
T(n) = 4T(n/2) + \Theta(n) \implies T(n) = \Theta(n^2)
\]

\[\uparrow\]

assumes \(n\) is a power of 2
key trick: 2 multiplies for the price of 1:

\[
x = 2^{n/2} \cdot x_1 + x_0 \\
y = 2^{n/2} \cdot y_1 + y_0 \\
xy = (2^{n/2} \cdot x_1 + x_0)(2^{n/2} \cdot y_1 + y_0) \\
\]

\[
= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot (x_1 y_0 + x_0 y_1) + x_0 y_0 \\
\]

Well, ok, 4 for 3 is more accurate...

\[
\alpha = x_1 + x_0 \\
\beta = y_1 + y_0 \\
\alpha \beta = (x_1 + x_0)(y_1 + y_0) \\
= x_1 y_1 + (x_1 y_0 + x_0 y_1) + x_0 y_0 \\
(x_1 y_0 + x_0 y_1) = \alpha \beta - x_1 y_1 - x_0 y_0 \\
\]
Karatsuba multiplication

To multiply two n-bit integers:

Add two \(\frac{1}{2} n \) bit integers.

Multiply three \(\frac{1}{2} n \)-bit integers.

Add, subtract, and shift \(\frac{1}{2} n \)-bit integers to obtain result.

\[
\begin{align*}
x &= 2^{n/2} \cdot x_1 + x_0 \\
y &= 2^{n/2} \cdot y_1 + y_0 \\
x y &= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left(x_1 y_0 + x_0 y_1 \right) + x_0 y_0 \\
 &= 2^n \cdot x_1 y_1 + 2^{n/2} \cdot \left((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0 \right) + x_0 y_0
\end{align*}
\]

Theorem. [Karatsuba-Ofman, 1962] Can multiply two n-digit integers in \(O(n^{1.585}) \) bit operations.

\[
T(n) \leq T\left(\left\lfloor \frac{n}{2} \right\rfloor \right) + T\left(\left\lceil \frac{n}{2} \right\rceil \right) + T\left(1 + \left\lceil \frac{n}{2} \right\rceil \right) + \Theta(n)
\]

Sloppy version: \(T(n) \leq 3T(n/2) + O(n) \)

\[\Rightarrow T(n) = O(n^{\log_2 3}) = O(n^{1.585})\]
multiplication – the bottom line

Naïve: $\Theta(n^2)$
Karatsuba: $\Theta(n^{1.59\ldots})$

Amusing exercise: generalize Karatsuba to do 5 size $n/3$ subproblems $\rightarrow \Theta(n^{1.46\ldots})$

Best known: $\Theta(n \log n \log\log n)$
"Fast Fourier Transform"
but mostly unused in practice (unless you need really big numbers - a billion digits of π, say)

High precision arithmetic IS important for crypto
Idea:

“Two halves are better than a whole”
if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
repeat above, recursively

Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest points, Integer multiply,…
Recurrences

Above: Where they come from, how to find them

Next: how to solve them
Mergesort: (recursively) sort 2 half-lists, then merge results.

\[T(n) = 2T(n/2) + cn, \quad n \geq 2 \]
\[T(1) = 0 \]

Solution: \(\Theta(n \log n) \)

(details later)

now
Solve:
\[T(1) = c \]
\[T(n) = 2 \, T(n/2) + cn \]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Level} & \text{Num} & \text{Size} & \text{Work} \\
\hline
0 & 1 = 2^0 & n & cn \\
1 & 2 = 2^1 & n/2 & 2cn/2 \\
2 & 4 = 2^2 & n/4 & 4cn/4 \\
\vdots & \vdots & \vdots & \vdots \\
i & 2^i & n/2^i & 2^i \, c \, n/2^i \\
\vdots & \vdots & \vdots & \vdots \\
k-1 & 2^{k-1} & n/2^{k-1} & 2^{k-1} \, c \, n/2^{k-1} \\
k & 2^k & n/2^k = 1 & 2^k \, T(1) \\
\hline
\end{array}
\]

\[n = 2^k ; k = \log_2 n \]

Total Work: \(c \, n \, (1 + \log_2 n) \) (add last col)
Solve:

\[T(1) = c \]
\[T(n) = 4 \cdot T\left(\frac{n}{2}\right) + cn \]

<table>
<thead>
<tr>
<th>Level</th>
<th>Num</th>
<th>Size</th>
<th>Work</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>(n)</td>
<td>(cn)</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>(n/2)</td>
<td>(4cn/2)</td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>(n/4)</td>
<td>(16cn/4)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(i)</td>
<td>(4^i)</td>
<td>(n/2^i)</td>
<td>(4^i \cdot cn/2^i)</td>
</tr>
<tr>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(k-1)</td>
<td>(4^{k-1})</td>
<td>(n/2^{k-1})</td>
<td>(4^{k-1} \cdot cn/2^{k-1})</td>
</tr>
<tr>
<td>(k)</td>
<td>(4^k)</td>
<td>(n/2^k = 1)</td>
<td>(4^k T(1))</td>
</tr>
</tbody>
</table>

\(n = 2^k\); \(k = \log_2 n\)

Total Work: \(T(n) = \sum_{i=0}^{k} 4^i c n / 2^i = O(n^2)\)

\(4^k = (2^2)^k = (2^k)^2 = n^2\)
Solve:

\[T(1) = c \]

\[T(n) = 3 \cdot T(n/2) + cn \]

\[n = 2^k ; k = \log_2 n \]

Total Work:

\[T(n) = \sum_{i=0}^{k} 3^i \frac{cn}{2^i} \]
Theorem:

\[1 + x + x^2 + x^3 + \ldots + x^k = \frac{(x^{k+1} - 1)}{(x-1)} \]

proof:

\[y = 1 + x + x^2 + x^3 + \ldots + x^k \]
\[xy = x + x^2 + x^3 + \ldots + x^k + x^{k+1} \]
\[xy - y = x^{k+1} - 1 \]
\[y(x - 1) = x^{k+1} - 1 \]
\[y = \frac{(x^{k+1} - 1)}{(x-1)} \]
Solve:

\[T(1) = c \]

\[T(n) = 3 \ T(n/2) + cn \quad \text{(cont.)} \]

\[
T(n) = \sum_{i=0}^{k} 3^i \frac{cn}{2^i}
\]

\[
= cn \sum_{i=0}^{k} \frac{3^i}{2^i}
\]

\[
= cn \sum_{i=0}^{k} \left(\frac{3}{2} \right)^i
\]

\[
= cn \left(\frac{\left(\frac{3}{2} \right)^{k+1} - 1}{\left(\frac{3}{2} \right) - 1} \right)
\]

\[
\sum_{i=0}^{k} x^i = \frac{x^{k+1} - 1}{x - 1} \quad (x \neq 1)
\]
Solve: \(T(1) = c \)
\(T(n) = 3 \ T(n/2) + cn \) (cont.)

\[
cn \frac{\left(\frac{3}{2}\right)^{k+1} - 1}{\left(\frac{3}{2}\right) - 1} = 2cn\left(\left(\frac{3}{2}\right)^{k+1} - 1\right)
< 2cn\left(\frac{3}{2}\right)^{k+1}
= 3cn\left(\frac{3}{2}\right)^k
= 3cn \frac{3^k}{2^k}
\]
Solve: \(T(1) = c \)
\(T(n) = 3 \, T(n/2) + cn \) (cont.)

\[
3cn \frac{3^k}{2^k} = 3cn \frac{3^{\log_2 n}}{2^{\log_2 n}} = 3cn \frac{n}{n} = 3c3^{\log_2 n} = 3c\left(n^{\log_2 3}\right) = O\left(n^{1.59...}\right)
\]

\[
\begin{align*}
\quad & a^{\log_b n} \\
& = \left(b^{\log_b a}\right)^{\log_b n} \\
& = \left(b^{\log_b n}\right)^{\log_b a} \\
& = n^{\log_b a}
\end{align*}
\]
divide and conquer – master recurrence

\[T(n) = aT\left(\frac{n}{b}\right) + cn^k \text{ for } n > b \text{ then} \]

\[a > b^k \implies T(n) = \Theta(n^{\log_b a}) \quad \text{[many subproblems \(\rightarrow\) leaves dominate]} \]

\[a < b^k \implies T(n) = \Theta(n^k) \quad \text{[few subproblems \(\rightarrow\) top level dominates]} \]

\[a = b^k \implies T(n) = \Theta(n^k \log n) \quad \text{[balanced \(\rightarrow\) all \(\log n\) levels contribute]} \]

Fine print:
\[a \geq 1; b > 1; c, d, k \geq 0; T(1) = d; n = b^t \text{ for some } t > 0; \]
\[a, b, k, t \text{ integers. True even if it is } \left\lfloor \frac{n}{b} \right\rfloor \text{ instead of } \frac{n}{b}. \]
master recurrence: proof sketch

Expanding recurrence as in earlier examples, to get

\[T(n) = n^g \left(d + c \sum_{j=1}^{\log_b n} x^j \right) \]

where \(g = \log_b(a) \) and \(\sum_{j=1}^{\log_b n} x^j \), where \(x = b^k/a \).

If \(c = 0 \) the sum \(S \) is irrelevant, and \(T(n) = O(n^g) \): all the work happens in the base cases, of which there are \(n^g \), one for each leaf in the recursion tree.

If \(c > 0 \), then the sum matters, and splits into 3 cases (like previous slide):

- if \(x < 1 \), then \(S < x/(1-x) = O(1) \). [\(S \) is just the first \(\log n \) terms of the infinite series with that sum].
- if \(x = 1 \), then \(S = \log_b(n) = O(\log n) \). [all terms in the sum are 1 and there are that many terms].
- if \(x > 1 \), then \(S = x \left(x^{1+\log_b(n)-1}/(x-1) \right) \). After some algebra, \(n^g \cdot S = O(n^k) \).
another d&c example: fast exponentiation

\[\text{Power}(a,n) \]

Input: integer \(n \) and number \(a \)

Output: \(a^n \)

Observation:

if \(n \) is even, \(n = 2m \), then \(a^n = a^m \cdot a^m \)
divide & conquer algorithm

\begin{verbatim}
Power(a,n)
 if n = 0 then return(1)
 if n = 1 then return(a)
 x ← Power(a,\lfloor n/2 \rfloor)
 x ← x•x
 if n is odd then
 x ← a•x
 return(x)
\end{verbatim}
Let $M(n)$ be number of multiplies

Worst-case recurrence:

$$M(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
M\left(\lfloor n/2 \rfloor \right) + 2 & \text{if } n > 1
\end{cases}$$

By master theorem

$$M(n) = O(\log n) \quad (a=1, \ b=2, \ k=0)$$

More precise analysis:

$$M(n) = \lfloor \log_2 n \rfloor + (\text{# of 1's in n's binary representation}) - 1$$

Time is $O(M(n))$ if numbers $<\text{word size}$, else also depends on length, multiply algorithm
Instead of a^n want $a^n \mod N$

$$a^{i+j} \mod N = ((a^i \mod N) \cdot (a^j \mod N)) \mod N$$

same algorithm applies with each $x \cdot y$ replaced by

$$((x \mod N) \cdot (y \mod N)) \mod N$$

In RSA cryptosystem (widely used for security)

need $a^n \mod N$ where a, n, N each typically have 1024 bits

Power: at most 2048 multiplies of 1024 bit numbers

relatively easy for modern machines

Naive algorithm: 2^{1024} multiplies
d & c summary

Idea:

“Two halves are better than a whole”
if the base algorithm has super-linear complexity.

“If a little's good, then more's better”
repeat above, recursively

Analysis: recursion tree or Master Recurrence

Applications: Many.

Binary Search, Merge Sort, (Quicksort), Closest points, Integer multiply, exponentiation,…