CSE 421
Algorithms

Huffman Codes:
An Optimal Data Compression Method
Compression Example

100k file, 6 letter alphabet:

File Size:
- ASCII, 8 bits/char: 800kbits
- $2^3 > 6$; 3 bits/char: 300kbits

Why?
- Storage, transmission vs 5 Ghz cpu

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45%</td>
</tr>
<tr>
<td>b</td>
<td>13%</td>
</tr>
<tr>
<td>c</td>
<td>12%</td>
</tr>
<tr>
<td>d</td>
<td>16%</td>
</tr>
<tr>
<td>e</td>
<td>9%</td>
</tr>
<tr>
<td>f</td>
<td>5%</td>
</tr>
</tbody>
</table>
Compression Example

100k file, 6 letter alphabet:

File Size:
- ASCII, 8 bits/char: 800kbits
- $2^3 > 6$; 3 bits/char: 300kbits
- better: 2.52 bits/char $74\% \times 2 + 26\% \times 4$: 252kbits
- Optimal?

E.g.:
- Why not:
 - a 00 00
 - b 01 01
 - d 10 10
 - c 1100 110
 - e 1101 1101
 - f 1110 1110

1101110 = cf or ec?
Data Compression

Binary character code (“code”)

- each k-bit source string maps to unique code word (e.g. k=8)
- “compression” alg: concatenate code words for successive k-bit “characters” of source

Fixed/variable length codes

- all code words equal length?

Prefix codes

- no code word is prefix of another (unique decoding)
Prefix Codes = Trees

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>

Binary Codes:

- **f**: 1010000001
- **a**: 1010000000
- **b**: 1001000000

Binary Codes:

- **f**: 110000101
- **a**: 110000100
- **b**: 110000101
Greedy Idea #1

Put **most** frequent
under root, then recurse ...
Greedy Idea #1

Top down: Put *most* frequent under root, then recurse

Too greedy: unbalanced tree

\[0.45 \times 1 + 0.16 \times 2 + 0.13 \times 3 \ldots = 2.34 \]
not too bad, but imagine if all freqs were \(\sim \frac{1}{6} \):
\[(1+2+3+4+5+5)/6 = 3.33 \]
Greedy Idea #2

Top down: Divide letters into 2 groups, with ~50% weight in each; recurse (Shannon-Fano code)

Again, not terrible

2*.5+3*.5 = 2.5

But this tree can easily be improved! (How?)
Greedy idea #3

Bottom up: Group least frequent letters near bottom

<table>
<thead>
<tr>
<th>Letter</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>45%</td>
</tr>
<tr>
<td>b</td>
<td>13%</td>
</tr>
<tr>
<td>c</td>
<td>12%</td>
</tr>
<tr>
<td>d</td>
<td>16%</td>
</tr>
<tr>
<td>e</td>
<td>9%</td>
</tr>
<tr>
<td>f</td>
<td>5%</td>
</tr>
</tbody>
</table>

Diagram:

```
  100
   /   
  25    14
   /     /  
 c:12  f:5 e:9
 /     
b:13
```
.45*1 + .41*3 + .14*4 = 2.24 bits per char
Huffman’s Algorithm (1952)

Algorithm:

insert node for each letter into priority queue by freq
while queue length > 1 do
 remove smallest 2; call them x, y
 make new node z from them, with f(z) = f(x) + f(y)
 insert z into queue

Analysis: $O(n)$ heap ops: $O(n \log n)$

Goal: Minimize $B(T) = \sum_{c \in C} \text{freq}(c) \times \text{depth}(c)$

Correctness: ???
Correctness Strategy

Optimal solution may not be unique, so cannot prove that greedy gives the only possible answer.

Instead, show that greedy’s solution is as good as any.

How: an exchange argument
Defn: A pair of leaves is an inversion if
\[\text{depth}(x) \geq \text{depth}(y) \]
and
\[\text{freq}(x) \geq \text{freq}(y) \]

Claim: If we flip an inversion, cost never increases.

Why? All other things being equal, better to give more frequent letter the shorter code.

\[
(d(x) \cdot f(x) + d(y) \cdot f(y)) - (d(x) \cdot f(y) + d(y) \cdot f(x)) =
\]
\[
(d(x) - d(y)) \cdot (f(x) - f(y)) \geq 0
\]

I.e., non-negative cost savings.
Lemma 1: “Greedy Choice Property”

The 2 least frequent letters might as well be siblings at deepest level

Let a be least freq, b 2^{nd}
Let u, v be siblings at max depth, $f(u) \leq f(v)$ (why must they exist?)
Then (a, u) and (b, v) are inversions. Swap them.
Lemma 2

Let (C, f) be a problem instance: C an n-letter alphabet with letter frequencies f(c) for c in C.
For any x, y in C, let C' be the (n-1) letter alphabet C - {x,y} ∪ {z} and for all c in C' define

\[f'(c) = \begin{cases} f(c), & \text{if } c \neq x, y, z \\ f(x) + f(y), & \text{if } c = z \end{cases} \]

Let T' be an optimal tree for (C',f').
Then

\[T' = \begin{array}{c} T' \end{array} \]

is optimal for (C,f) among all trees having x, y as siblings
Proof:

\[B(T) = \sum_{c \in C} d_T(c) \cdot f(c) \]

\[B(T) - B(T') = d_T(x) \cdot (f(x) + f(y)) - d_{T'}(z) \cdot f'(z) \]

\[= (d_{T'}(z) + 1) \cdot f'(z) - d_{T'}(z) \cdot f'(z) \]

\[= f'(z) \]

Suppose \(\hat{T} \) (having \(x \) & \(y \) as siblings) is better than \(T \), i.e.

\[B(\hat{T}) < B(T) \]. Collapse \(x \) & \(y \) to \(z \), forming \(\hat{T'} \); as above:

\[B(\hat{T}) - B(\hat{T'}) = f'(z) \]

Then:

\[B(\hat{T'}) = B(\hat{T}) - f'(z) < B(T) - f'(z) = B(T') \]

Contradicting optimality of \(T' \)
Theorem: Huffman gives optimal codes

Proof: induction on \(|C|\)

Basis: \(n=1,2\) – immediate

Induction: \(n>2\)

Let \(x, y\) be least frequent

Form \(C', f', \& z\), as above

By induction, \(T'\) is opt for \((C', f')\)

By lemma 2, \(T' \rightarrow T\) is opt for \((C, f)\) among trees with \(x, y\) as siblings

By lemma 1, some opt tree has \(x, y\) as siblings

Therefore, \(T\) is optimal.
Data Compression

Huffman is **optimal**.

BUT still might do better!

- Huffman encodes fixed length blocks. What if we vary them?
- Huffman uses one encoding throughout a file. What if characteristics change?
- What if data has structure? E.g. raster images, video,…
- Huffman is lossless. Necessary?

LZW, MPEG, …
David A. Huffman, 1925-1999