Chapter 4

Greedy Algorithms
Intro: Coin Changing
Coin Changing

Goal. Given currency denominations: 1, 5, 10, 25, 100, give change to customer using *fewest* number of coins.

Ex: 34¢.

Cashier's algorithm. At each iteration, give the *largest* coin valued \leq the amount to be paid.

Ex: $2.89.$
Observation. Greedy algorithm is sub-optimal for US postal denominations: 1, 10, 21, 34, 70, 100, 350, 1225, 1500.

Counterexample. 140¢.
- Greedy: 100, 34, 1, 1, 1, 1, 1.
- Optimal: 70, 70.
Outline & Goals

“Greedy Algorithms”
what they are

Pros
intuitive
often simple
often fast

Cons
often incorrect!

Proof techniques
stay ahead
structural
exchange arguments
4.1 Interval Scheduling

Proof Technique 1: “greedy stays ahead”
Interval Scheduling

Interval scheduling.
- Job j starts at s_j and finishes at f_j.
- Two jobs compatible if they don’t overlap.
- Goal: find maximum subset of mutually compatible jobs.

```
  0  1  2  3  4  5  6  7  8  9  10  11
    a
    b
    c
    d
    e
    f
    g
    h
```

Time
Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- What order?
- Does that give best answer?
- Why or why not?
- Does it help to be greedy about order?
Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

[Earliest start time] Consider jobs in ascending order of start time s_j.

[Earliest finish time] Consider jobs in ascending order of finish time f_j.

[Shortest interval] Consider jobs in ascending order of interval length $f_j - s_j$.

[Fewest conflicts] For each job, count the number of conflicting jobs c_j. Schedule in ascending order of conflicts c_j.
Interval Scheduling: Greedy Algorithms

Greedy template. Consider jobs in some order. Take each job provided it's compatible with the ones already taken.

- breaks earliest start time
- breaks shortest interval
- breaks fewest conflicts
Interval Scheduling: Greedy Algorithm

Greedy algorithm. Consider jobs in increasing order of finish time. Take each job provided it’s compatible with the ones already taken.

Sort jobs by finish times so that $f_1 \leq f_2 \leq \ldots \leq f_n$.

```
A ← φ
for j = 1 to n {
    if (job j compatible with A)
        A ← A ∪ {j}
}
return A
```

Implementation. $O(n \log n)$.

- Remember job j^* that was added last to A.
- Job j is compatible with A if $s_j \geq f_{j^*}$.
Interval Scheduling
Interval Scheduling
Interval Scheduling

Time

B
C
A
D
E
F
G
H

0 1 2 3 4 5 6 7 8 9 10 11

B
E

0 1 2 3 4 5 6 7 8 9 10 11
Interval Scheduling

A	C
B | D
---|---
E | F
---|---
G | H
---|---

Time

0 1 2 3 4 5 6 7 8 9 10 11

B	D
0 1 2 3 4 5 6 7 8 9 10 11

17
Interval Scheduling

A B C D E F G H

Time

0 1 2 3 4 5 6 7 8 9 10 11
Interval Scheduling

Time

0 1 2 3 4 5 6 7 8 9 10 11

A B C D E F G H

B E G
Interval Scheduling

The diagram illustrates a scheduling problem where tasks (A, B, C, D, E, F, G, H) are represented as intervals on a timeline. The goal is to maximize the number of tasks scheduled without overlapping.

- **A** is scheduled from 0 to 6.
- **B** is scheduled from 1 to 3.
- **C** is scheduled from 3 to 5.
- **D** is scheduled from 4 to 7.
- **E** is scheduled from 5 to 7.
- **F** is scheduled from 6 to 9.
- **G** is scheduled from 7 to 11.
- **H** is scheduled from 8 to 11.

The diagram shows that tasks **A**, **B**, **D**, **F**, and **G** can be scheduled without overlapping, maximizing the number of tasks that can be completed.
Interval Scheduling: Correctness

Theorem. Greedy algorithm is optimal.

Pf. (”greedy stays ahead”)

Let \(i_1, i_2, \ldots, i_k \) be jobs picked by greedy, \(j_1, j_2, \ldots, j_m \) those in some optimal solution

Show \(f(i_r) \leq f(j_r) \) by induction on \(r \).

Basis: \(i_1 \) chosen to have min finish time, so \(f(i_1) \leq f(j_1) \)

Ind: \(f(i_r) \leq f(j_r) \leq s(j_{r+1}) \), so \(j_{r+1} \) is among the candidates considered by greedy when it picked \(i_{r+1} \), & it picks min finish, so \(f(i_{r+1}) \leq f(j_{r+1}) \)

Similarly, \(k \geq m \), else \(j_{k+1} \) is among (nonempty) set of candidates for \(i_{k+1} \).
4.1 Interval Partitioning

Proof Technique 2: “Structural”
Interval Partitioning

Interval partitioning.

- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses 4 classrooms to schedule 10 lectures.
Interval Partitioning as Interval Graph Coloring

Vertices = classes;
edges = conflicting class pairs;
different colors = different assigned rooms

Note: graph coloring is very hard in general, but graphs corresponding to interval intersections are a much simpler special case.
Interval Partitioning

Interval partitioning.
- Lecture j starts at s_j and finishes at f_j.
- Goal: find minimum number of classrooms to schedule all lectures so that no two occur at the same time in the same room.

Ex: This schedule uses only 3.
Interval Partitioning: A “Structural” Lower Bound on Optimal Solution

Def. The depth of a set of open intervals is the maximum number that contain any given time.

Key observation. Number of classrooms needed ≥ depth.

Ex: Depth of schedule below = 3 ⇒ schedule below is optimal.

Q. Does there always exist a schedule equal to depth of intervals?
Interval Partitioning: Greedy Algorithm

Greedy algorithm. Consider lectures in increasing order of start time: assign lecture to any compatible classroom.

Sort intervals by starting time so that \(s_1 \leq s_2 \leq \ldots \leq s_n \).

\[d \leftarrow 0 \rightarrow \text{number of allocated classrooms} \]

\[
\text{for } j = 1 \text{ to } n \{ \\
\quad \text{if (lect } j \text{ is compatible with some classroom } k, 1 \leq k \leq d) } \\
\quad \quad \text{schedule lecture } j \text{ in classroom } k \\
\quad \text{else} \\
\quad \quad \text{allocate a new classroom } d + 1 \\
\quad \quad \text{schedule lecture } j \text{ in classroom } d + 1 \\
\quad d \leftarrow d + 1 \\
\}\]

Implementation? Run-time? Exercises
Observation. Greedy algorithm never schedules two incompatible lectures in the same classroom.

Theorem. Greedy algorithm is optimal.

Pf (exploit structural property).

- Let $d = \text{number of classrooms that the greedy algorithm allocates.}$
- Classroom d is opened because we needed to schedule a job, say j, that is incompatible with all $d-1$ previously used classrooms.
- Since we sorted by start time, all these incompatibilities are caused by lectures that start no later than s_j.
- Thus, we have d lectures overlapping at time $s_j + \varepsilon$, i.e. depth $\geq d$.
- “Key observation” \Rightarrow all schedules use \geq depth classrooms, so $d = \text{depth and greedy is optimal}$.

Interval Partitioning: Alt Proof (An “Exchange Argument”)

- When 4th room added, room 1 was free; why not swap it in there?
- (A: it conflicts with later stuff in schedule, which dominoes)
- But: room 4 schedule after 11:00 is conflict-free; so is room 1 schedule, so could swap both post-11:00 schedules
- Why does it help? Delays needing 4th room; repeat.

Cleaner: “Let S* be an opt sched with latest use of last room. When that room is added, all others in use (else we could swap, contradicting ‘latest’) so #rooms = depth, hence optimal”
4.2 Scheduling to Minimize Lateness

Proof Technique 3: “Exchange” Arguments
Scheduling to Minimize Lateness

Minimizing lateness problem.
- Single resource processes one job at a time.
- Job j requires t_j units of processing time and is due at time d_j.
- If j starts at time s_j, it finishes at time $f_j = s_j + t_j$.
- Lateness: $\ell_j = \max \{0, f_j - d_j\}$.
- Goal: schedule all jobs to minimize maximum lateness $L = \max \ell_j$.

Ex:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>d_j</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

lateness = 2 \hspace{2cm} lateness = 0 \hspace{2cm} max lateness = 6

$\begin{array}{cccccccc}
d_3 = 9 & d_2 = 8 & d_6 = 15 & d_1 = 6 & d_5 = 14 & d_4 = 9 \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15
\end{array}$
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

[Shortest processing time first]
Consider jobs in ascending order of processing time t_j.

[Earliest deadline first]
Consider jobs in ascending order of deadline d_j.

[Smallest slack]
Consider jobs in ascending order of slack $d_j - t_j$.
Minimizing Lateness: Greedy Algorithms

Greedy template. Consider jobs in some order.

[Shortest processing time first] Consider jobs in ascending order of processing time t_j.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>d_j</td>
<td>100</td>
<td>10</td>
</tr>
</tbody>
</table>

counterexample

[Smallest slack] Consider jobs in ascending order of slack $d_j - t_j$.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_j</td>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>d_j</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

counterexample
Minimizing Lateness: Greedy Algorithm

Greedy algorithm. Earliest deadline first.

Sort n jobs by deadline so that \(d_1 \leq d_2 \leq \ldots \leq d_n \)

\[
t \leftarrow 0
\]

for j = 1 to n

// Assign job j to interval \([t, t + t_j]\):

\[
\begin{align*}
 s_j &\leftarrow t, f_j \leftarrow t + t_j \\
t &\leftarrow t + t_j
\end{align*}
\]

output intervals \([s_j, f_j]\)

<table>
<thead>
<tr>
<th>j</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_j)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>(d_j)</td>
<td>6</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>14</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(d_1 = 6)</th>
<th>(d_2 = 8)</th>
<th>(d_3 = 9)</th>
<th>(d_4 = 9)</th>
<th>(d_5 = 14)</th>
<th>(d_6 = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

max lateness = 1
Minimizing Lateness: No Idle Time

Observation. There exists an optimal schedule with no idle time.

Observation. The greedy schedule has no idle time.
Minimizing Lateness: Inversions

Def. An *inversion* in schedule S is a pair of jobs i and j such that: deadline $i < j$ but j scheduled before i.

Observation. Greedy schedule has no inversions.

Observation. If a schedule (with no idle time) has an inversion, it has one with a pair of inverted jobs scheduled consecutively.
 (If j & i aren’t consecutive, then look at the job k scheduled right after j. If $d_k < d_j$, then (j,k) is a consecutive inversion; if not, then (k,i) is an inversion, & nearer to each other - repeat.)

Observation. Swapping adjacent inversion reduces # inversions by 1 (exactly)
Def. An *inversion* in schedule S is a pair of jobs i and j such that: deadline $i < j$ but j scheduled before i.

before swap

| j | i |

after swap

| i | j |

(j had later deadline, so is less tardy than i was)

Claim. *Swapping* two consecutive, inverted jobs reduces the number of inversions by one and does not increase the max lateness.

Pf. Let ℓ be the lateness before the swap, and let ℓ' be it afterwards.

- $\ell'_k = \ell_k$ for all $k \neq i, j$
- $\ell'_i \leq \ell_i$
- If job j is now late:

\[
\ell'_j = f'_j - d_j \quad \text{(definition)} \\
= f_j - d_j \quad \text{(j finishes at time f_i)} \\
\leq f_i - d_i \quad \text{($d_i \leq d_j$)} \\
= \ell_i \quad \text{(definition)}
\]
Minimizing Lateness: No Inversions

Claim. All inversion-free schedules S have the same max lateness.

Pf. If S has no inversions, then deadlines of scheduled jobs are monotonically nondecreasing, i.e., they increase (or stay the same) as we walk through the schedule from left to right.

Two such schedules can differ only in the order of jobs with the same deadlines. Within a group of jobs with the same deadline, the max lateness is the lateness of the last job in the group - order within the group doesn’t matter.
Minimizing Lateness: Correctness of Greedy Algorithm

Theorem. Greedy schedule S is optimal

Pf. Let S^* be an optimal schedule with the fewest number of inversions

Can assume S^* has no idle time.

If S^* has an inversion, let $i-j$ be an adjacent inversion

Swapping i and j does not increase the maximum lateness and

strictly decreases the number of inversions

This contradicts definition of S^*

So, S^* has no inversions. But then $\text{Lateness}(S) = \text{Lateness}(S^*)$
Greedy Analysis Strategies

Greedy algorithm *stays ahead*. Show that after each step of the greedy algorithm, its solution is at least as “good” as any other algorithm's. (Part of the cleverness is deciding what’s “good.”)

Structural. Discover a simple "structural" bound asserting that every possible solution must have a certain value. Then show that your algorithm always achieves this bound. (Cleverness here is usually in finding a useful structural characteristic.)

Exchange argument. Gradually transform any solution to the one found by the greedy algorithm without hurting its quality.
4.3 Optimal Caching

1 cache
 Pronunciation: 'kash
 Function: noun
 Etymology: French, from cache to press, hide
 a hiding place especially for concealing and preserving provisions or implements

2 cache
 Function: transitive verb
 to place, hide, or store in a cache

- Webster’s Dictionary
Optimal Offline Caching

Caching.
- Cache with capacity to store k items.
- Sequence of m item requests d_1, d_2, \ldots, d_m.
- Cache hit: item already in cache when requested.
- Cache miss: item not already in cache when requested: must bring requested item into cache, and evict some existing item, if full.

Goal. Eviction schedule that minimizes number of cache misses.

Ex: $k = 2$, initial cache = ab,
requests: a, b, c, b, c, a, a, b.

Optimal eviction schedule: 2 cache misses.

<table>
<thead>
<tr>
<th>requests</th>
<th>cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>c</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>

42
Optimal Offline Caching: Farthest-In-Future

Farthest-in-future. Evict item in the cache that is not requested until farthest in the future.

current cache: \[a \ b \ c \ d \ e \ f \]

future queries: \[g \ a \ b \ c \ e \ d \ a \ b \ b \ a \ c \ d \ e \ a \ f \ a \ d \ e \ f \ g \ h \ldots \]

Theorem. [Bellady, 1960s] FF is optimal eviction schedule.
Pf. Algorithm and theorem are intuitive; proof is subtle.

Motivation: “Online” problem is typically what’s needed in practice - decide what to evict without seeing the future. How to evaluate such an alg? Fewer misses is obviously better, but how few? FF is a useful benchmark - best online alg is unknown, but it’s no better than FF, so online performance close to FF’s is the best you can hope for.
You’ve seen this in 326, 332 or 373, so this section and next two on min spanning tree are review. I won’t lecture on them, but you should review the material. Both, but especially shortest paths, are common problems, having many applications.
Shortest Path Problem

Shortest path network.
- Directed graph $G = (V, E)$.
- Source s, destination t.
- Length $\ell_e = \text{length of edge } e$.

Shortest path problem: find shortest directed path from s to t.

Cost of path $s-2-3-5-t$ = $9 + 23 + 2 + 16 = 48$.

cost of path = sum of edge costs in path
Dijkstra's Algorithm

Dijkstra's algorithm.
- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{ s \}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$
\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e ,
$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)
Dijkstra's Algorithm

Dijkstra's algorithm.

- Maintain a set of explored nodes S for which we have determined the shortest path distance $d(u)$ from s to u.
- Initialize $S = \{s\}$, $d(s) = 0$.
- Repeatedly choose unexplored node v which minimizes

$$\pi(v) = \min_{e = (u,v) : u \in S} d(u) + \ell_e,$$

add v to S, and set $d(v) = \pi(v)$.

shortest path to some u in explored part, followed by a single edge (u, v)