Chapter 6
Dynamic Programming

6.8 Shortest Paths

Shortest Paths

Shortest path problem. Given a directed graph \(G = (V, E) \), with edge weights \(c_{vw} \), find shortest path from node \(s \) to node \(t \).

- allow negative weights

Ex. Nodes represent agents in a financial setting and \(c_{vw} \) is cost of transaction in which we buy from agent \(v \) and sell immediately to \(w \).

![Graph with node connections and weights]

Shortest Paths: Failed Attempts

Dijkstra. Can fail if negative edge costs.

![Graph with negative edge costs]

Re-weighting. Adding a constant to every edge weight can fail.

![Graph with re-weighted edge costs]
Shortest Paths: Negative Cost Cycles

Negative cost cycle.

Observation. If some path from \(s \) to \(t \) contains a negative cost cycle, there does not exist a shortest \(s \)-\(t \) path; otherwise, there exists one that is simple.

Shortest Paths: Dynamic Programming

Def. \(\text{OPT}(i, v) \) = length of shortest \(v \)-\(t \) path \(P \) using at most \(i \) edges.

- Case 1: \(P \) uses at most \(i-1 \) edges.
 - \(\text{OPT}(i, v) = \text{OPT}(i-1, v) \)

- Case 2: \(P \) uses exactly \(i \) edges.
 - if \((v, w)\) is first edge, then \(\text{OPT} \) uses \((v, w)\), and then selects best \(w \)-\(t \) path using at most \(i-1 \) edges

Remark. By previous observation, if no negative cycles, then \(\text{OPT}(n-1, v) \) = length of shortest \(v \)-\(t \) path.

Shortest Paths: Implementation

Analysis. \(\Theta(mn) \) time, \(\Theta(n^2) \) space.

Finding the shortest paths. Maintain a "successor" for each table entry.

Shortest Paths: Practical Improvements

Practical improvements.

- Maintain only one array \(M[v] \) = shortest \(v \)-\(t \) path that we have found so far.
- No need to check edges of the form \((v, w)\) unless \(M[w] \) changed in previous iteration.

Theorem. Throughout the algorithm, \(M[v] \) is length of some \(v \)-\(t \) path, and after \(i \) rounds of updates, the value \(M[v] \) is no larger than the length of shortest \(v \)-\(t \) path using \(\leq i \) edges.

Overall impact.

- Memory: \(O(m + n) \).
- Running time: \(O(mn) \) worst case, but substantially faster in practice.
Bellman-Ford: Efficient Implementation

```plaintext
Push-Based-Shortest-Path(G, s, t) {
    foreach node v ∈ V {
        M[v] ← ∞
        successor[v] ← φ
    }
    M[t] = 0
    for i = 1 to n-1 {
        foreach node w ∈ V {
            if (M[w] has been updated in previous iteration) {
                foreach node v such that (v, w) ∈ E {
                    if (M[v] > M[w] + c vw) {
                        M[v] ← M[w] + c vw
                        successor[v] ← w
                    }
                }
                If no M[w] value changed in iteration i, stop.
            }
        }
    }
}
```

6.9 Distance Vector Protocol

Distance Vector Protocol

- **Communication network.**
 - Nodes = routers.
 - Edges = direct communication link.
 - Cost of edge = delay on link. — naturally nonnegative, but Bellman-Ford used anyway!

- **Dijkstra’s algorithm.** Requires global information of network.

- **Bellman-Ford.** Uses only local knowledge of neighboring nodes.

- **Synchronization.** We don’t expect routers to run in lockstep. The order in which each foreach loop executes is not important. Moreover, algorithm still converges even if updates are asynchronous.

Distance vector protocol.

- Each router maintains a vector of shortest path lengths to every other node (distances) and the first hop on each path (directions).
- Algorithm: each router performs n separate computations, one for each potential destination node.
- "Routing by rumor."

Ex. RIP, Xerox XNS RIP, Novell’s IPX RIP, Cisco’s IGRP, DEC’s DNA Phase IV, AppleTalk’s RTMP.

Caveat. Edge costs may change during algorithm (or fail completely).
Path Vector Protocols

- Link state routing.
 - Each router also stores the entire path.
 - Based on Dijkstra’s algorithm.
 - Avoids “counting-to-infinity” problem and related difficulties.
 - Requires significantly more storage.

Ex: Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

6.10 Negative Cycles in a Graph

Detecting Negative Cycles

Lemma. If OPT(n,v) = OPT(n-1,v) for all v, then no negative cycles.

Lemma. If OPT(n,v) < OPT(n-1,v) for some node v, then (any) shortest path from v to t contains a cycle W. Moreover W has negative cost.
Proof. (by contradiction)
- Since OPT(n,v) < OPT(n-1,v), we know P has exactly n edges.
- By pigeonhole principle, P must contain a directed cycle W.
- Deleting W yields a v-t path with < n edges ⇒ W has negative cost.

Theorem. Can detect negative cost cycle in O(mn) time.
- Add new node t and connect all nodes to t with 0-cost edge.
- Check if OPT(n, v) = OPT(n-1, v) for all nodes v.
 - if yes, then no negative cycles
 - if no, then extract cycle from shortest path from v to t
Detecting Negative Cycles: Application

Currency conversion. Given \(n \) currencies and exchange rates between pairs of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

Detecting Negative Cycles: Summary

Bellman-Ford. \(O(mn) \) time, \(O(m + n) \) space.
- Run Bellman-Ford for \(n \) iterations (instead of \(n-1 \)).
- Upon termination, Bellman-Ford successor variables trace a negative cycle if one exists.
- See p. 288 for improved version and early termination rule.