Chapter 4
Greedy Algorithms

4.5 Minimum Spanning Tree

Minimum Spanning Tree

Given a connected graph $G = (V, E)$ with real-valued edge weights c_e, an MST is a subset of the edges $T \subseteq E$ such that T is a spanning tree whose sum of edge weights is minimized.

Cayley’s Theorem. There are n^{n-2} spanning trees of K_n. Can’t solve by brute force.

Applications

MST is a fundamental problem with diverse applications.

- Network design.
 - telephone, electrical, hydraulic, TV cable, computer, road
- Approximation algorithms for NP-hard problems.
 - traveling salesperson problem, Steiner tree
- Indirect applications.
 - max bottleneck paths
 - LDPC codes for error correction
 - image registration with Renyi entropy
 - learning salient features for real-time face verification
 - reducing data storage in sequencing amino acids in a protein
 - model locality of particle interactions in turbulent fluid flows
 - autoconfig protocol for Ethernet bridging to avoid cycles in a network
- Cluster analysis.
Greedy Algorithms

Kruskal’s algorithm. Start with $T = \emptyset$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.

Reverse-Delete algorithm. Start with $T = E$. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T.

Prim’s algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Remark. All three algorithms produce an MST.

Cycles and Cuts

Cycle. Set of edges the form $a-b, b-c, c-d, \ldots, y-z, z-a$.

Cutset. A cut is a subset of nodes S. The corresponding cutset D is the subset of edges with exactly one endpoint in S.

Cut $S = (4, 5, 8)$
Cutset $D = 5-6, 5-7, 3-4, 3-5, 7-8$

Cycle $C = 1-2, 2-3, 3-4, 4-5, 5-6, 6-1$

Claim. A cycle and a cutset intersect in an even number of edges.

Pf. (by picture)
Greedy Algorithms

Simplifying assumption. All edge costs c_e are distinct.

Cut property. Let S be any subset of nodes, and let e be the min cost edge with exactly one endpoint in S. Then the MST T^* contains e.

Pf. (exchange argument)
- Suppose e does not belong to T^*, and let's see what happens.
- Adding e to T^* creates a cycle C in T^*.
- Edge e is both in the cycle C and in the cutset D corresponding to S.
- $T' = T^* \cup \{ e \} \setminus \{ f \}$ is also a spanning tree.
- Since $c_e < c_f$, $\text{cost}(T') < \text{cost}(T^*)$.
- This is a contradiction. □

Prim's Algorithm: Proof of Correctness

Prim's algorithm. [Jarník 1930, Dijkstra 1957, Prim 1959]
- Initialize S = any node.
- Apply cut property to S.
- Add min cost edge in cutset corresponding to S to T, and add one new explored node u to S.

Implementation: Prim's Algorithm

Implementation. Use a priority queue ala Dijkstra.
- Maintain set of explored nodes S.
- For each unexplored node v, maintain attachment cost $a[v] = \text{cost of cheapest edge } v \text{ to a node in } S$.
- $O(n^2)$ with an array; $O(m \log n)$ with a binary heap.

```java
Prim(G, c) {
    foreach (v ∈ V) a[v] ← ∞
    Initialize an empty priority queue Q
    foreach (v ∈ V) insert v onto Q
    Initialize set of explored nodes $S ← \emptyset$
    while (Q is not empty) {
        $u ← \text{delete min element from } Q$
        $S ← S \cup \{ u \}$
        foreach (edge $e = (u, v)$ incident to $u$)
            if ($v ∉ S$ and $(c_e < a[v])$)
                decrease priority $a[v]$ to $c_e$
    }
}
**Kruskal’s Algorithm: Proof of Correctness**

**Kruskal’s algorithm.** [Kruskal, 1956]
- Consider edges in ascending order of weight.
- **Case 1:** If adding \( e \) to \( T \) creates a cycle, discard \( e \) according to cycle property.
- **Case 2:** Otherwise, insert \( e = (u, v) \) into \( T \) according to cut property where \( S = \) set of nodes in \( u \)’s connected component.

![Case 1 and Case 2 diagrams](image)

**Implementation: Kruskal’s Algorithm**

**Implementation.** Use the union-find data structure.
- Build set \( T \) of edges in the MST.
- Maintain set for each connected component.
- \( O(m \log n) \) for sorting and \( O(m \alpha(m, n)) \) for union-find.

```java
Kruskal(G, c) {
Sort edges weights so that \(c_1 \leq c_2 \leq \ldots \leq c_m \).
T ← φ
foreach \(u \in V \) make a set containing singleton \(u \)
for \(i = 1 \) to \(m \) \((u, v) = e_i \)
if \(u \) and \(v \) are in different sets {
T ← T ∪ \{e_i\}
merge the sets containing \(u \) and \(v \)
}
return T
}
```

**Lexicographic Tiebreaking**

To remove the assumption that all edge costs are distinct: perturb all edge costs by tiny amounts to break any ties.

**Impact.** Kruskal and Prim only interact with costs via pairwise comparisons. If perturbations are sufficiently small, MST with perturbed costs is MST with original costs.

**Implementation.** Can handle arbitrarily small perturbations implicitly by breaking ties lexicographically, according to index.

```java
boolean less(i, j) {
if (cost(e_i) < cost(e_j)) return true
else if (cost(e_i) > cost(e_j)) return false
else if (i < j) return true
else return false
}
```

4.7 Clustering

Outbreak of cholera deaths in London in 1850s. Reference: Nina Mishra, HP Labs
**Clustering**

Clustered. Given a set $U$ of $n$ objects labeled $p_1, \ldots, p_n$, classify into coherent groups.

Distance function. Numeric value specifying "closeness" of two objects.

Fundamental problem. Divide into clusters so that points in different clusters are far apart.
- Routing in mobile ad hoc networks.
- Identify patterns in gene expression.
- Document categorization for web search.
- Similarity searching in medical image databases
- Skycat: cluster $10^6$ sky objects into stars, quasars, galaxies.

**Clustering of Maximum Spacing**

$k$-clustering. Divide objects into $k$ non-empty groups.

Distance function. Assume it satisfies several natural properties.
- $d(p_i, p_j) = 0$ iff $p_i = p_j$ (identity of indiscernibles)
- $d(p_i, p_j) \geq 0$ (nonnegativity)
- $d(p_i, p_j) = d(p_j, p_i)$ (symmetry)

Spacing. Min distance between any pair of points in different clusters.

Clustering of maximum spacing. Given an integer $k$, find a $k$-clustering of maximum spacing.

**Greedy Clustering Algorithm**

Single-link $k$-clustering algorithm.
- Form a graph on the vertex set $U$, corresponding to $n$ clusters.
- Find the closest pair of objects such that each object is in a different cluster, and add an edge between them.
- Repeat $n-k$ times until there are exactly $k$ clusters.

Key observation. This procedure is precisely Kruskal's algorithm (except we stop when there are $k$ connected components).

Remark. Equivalent to finding an MST and deleting the $k$-1 most expensive edges.

**Greedy Clustering Algorithm: Analysis**

Theorem. Let $C^*$ denote the clustering $C^*_1, \ldots, C^*_k$ formed by deleting the $k$-1 most expensive edges of a MST. $C^*$ is a $k$-clustering of max spacing.

Pf. Let $C$ denote some other clustering $C_1, \ldots, C_n$.
- The spacing of $C^*$ is the length $d^*$ of the $(k-1)$th most expensive edge.
- Let $p, q$ be in the same cluster in $C^*$, say $C^*_r$, but different clusters in $C$, say $C_r$ and $C_s$.
- Some edge $(p, q)$ on $p$-$q$ path in $C^*_r$ spans two different clusters in $C$.
- All edges on $p$-$p_j$ path have length $\leq d^*$ since Kruskal chose them.
- Spacing of $C$ is $\leq d^*$ since $p$ and $q$ are in different clusters.