Network Flow

Outline

• Network flow definitions
• Flow examples
• Augmenting Paths
• Residual Graph
• Ford Fulkerson Algorithm
• Cuts
• Maxflow-MinCut Theorem

Flow Example

Flow assignment and the residual graph

Network Flow Definitions

• Capacity
• Source, Sink
• Capacity Condition
• Conservation Condition
• Value of a flow
Network Flow Definitions

- **Flowgraph**: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e) \geq 0$
- Problem, assign flows $f(e)$ to the edges such that:
 - $0 \leq f(e) \leq c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is as large as possible

Flow Example

```
Construct a maximum flow and indicate the flow value
```

Find a maximum flow

```
Value of flow:
```

Augmenting Path Algorithm

- Augmenting path
 - Vertices v_1, v_2, \ldots, v_k
 - $v_1 = s$, $v_k = t$
 - Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \ldots k-1$

Find two augmenting paths
Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - G_R: edge e' from u to v with capacity $c - f$
 - G_R: edge e'' from v to u with capacity f

Build the residual graph

Augmenting Path Lemma

- Let $P = v_1, v_2, ..., v_k$ be a path from s to t with minimum capacity b in the residual graph.
- b units of flow can be added along the path P in the flow graph.

Proof

- Add b units of flow along the path P
- What do we need to verify to show we have a valid flow after we do this?
 -

Ford-Fulkerson Algorithm (1956)

while not done
 Construct residual graph G_R
 Find an s-t path P in G_R with capacity $b > 0$
 Add b units along in G

If the sum of the capacities of edges leaving S is at most C, then the algorithm takes at most C iterations.