CSE 421 Algorithms
Richard Anderson
Winter 2009
Lecture 6

Announcements
• Monday, January 19 – Holiday
• Reading
 – 4.1 – 4.3, Important material

Announcement

Lecture Summary
Bipartite Graphs and Two Coloring
• Algorithm
 – Run BFS
 – Color odd layers red, even layers blue
 – If no edges between the same layer, the graph is bipartite
 – If edge between two vertices of the same layer, then there is an odd cycle, and the graph is not bipartite
• Theorem
 – A graph is bipartite if and only if it has no odd cycles

Graph Search
• Data structure for next vertex to visit determines search order

Breadth First Search
• All edges go between vertices on the same layer or adjacent layers

Depth First Search
• Each edge goes between vertices on the same branch
• No cross edges
Connected Components

• Undirected Graphs

Computing Connected Components in $O(n+m)$ time

• A search algorithm from a vertex v can find all vertices in v’s component
• While there is an unvisited vertex v, search from v to find a new component

Directed Graphs

• A Strongly Connected Component is a subset of the vertices with paths between every pair of vertices.

Identify the Strongly Connected Components

Strongly connected components can be found in $O(n+m)$ time

• But it’s tricky!
• Simpler problem: given a vertex v, compute the vertices in v’s scc in $O(n+m)$ time

Topological Sort

• Given a set of tasks with precedence constraints, find a linear order of the tasks
Find a topological order for the following graph

If a graph has a cycle, there is no topological sort

- Consider the first vertex on the cycle in the topological sort
- It must have an incoming edge

Lemma: If a graph is acyclic, it has a vertex with in degree 0

- Proof:
 - Pick a vertex \(v_1 \), if it has in-degree 0 then done
 - If not, let \((v_2, v_1) \) be an edge, if \(v_2 \) has in-degree 0 then done
 - If not, let \((v_3, v_2) \) be an edge . . .
 - If this process continues for more than \(n \) steps, we have a repeated vertex, so we have a cycle

Topological Sort Algorithm

While there exists a vertex \(v \) with in-degree 0
- Output vertex \(v \)
- Delete the vertex \(v \) and all out going edges

Details for \(O(n+m) \) implementation

- Maintain a list of vertices of in-degree 0
- Each vertex keeps track of its in-degree
- Update in-degrees and list when edges are removed
- \(m \) edge removals at \(O(1) \) cost each

Large Graphs

- Examples of large (real world graphs)
- What would you compute?
- What are the programming considerations?