CSE 421
Algorithms
Richard Anderson
Winter 2009
Lecture 4

Announcements
• Reading
 – Chapter 2.1, 2.2
 – Chapter 3 (Mostly review)
 – Start on Chapter 4
• Homework Guidelines
 – Prove that your algorithm works
 • A proof is a “convincing argument”
 – Give the run time for you algorithm
 • Justify that the algorithm satisfies the runtime bound
 – You may lose points for style

What does it mean for an algorithm to be efficient?

Definitions of efficiency
• Fast in practice

Polynomial time efficiency
• An algorithm is efficient if it has a polynomial run time
• Run time as a function of problem size
 – Run time: count number of instructions executed on an underlying model of computation
 – T(n): maximum run time for all problems of size at most n

Polynomial Time
• Algorithms with polynomial run time have the property that increasing the problem size by a constant factor increases the run time by at most a constant factor (depending on the algorithm)
Why Polynomial Time?

- Generally, polynomial time seems to capture the algorithms which are efficient in practice
- The class of polynomial time algorithms has many good, mathematical properties

Polynomial vs. Exponential Complexity

- Suppose you have an algorithm which takes $n!$ steps on a problem of size n
- If the algorithm takes one second for a problem of size 10, estimate the run time for the following problem sizes:

<table>
<thead>
<tr>
<th>Size</th>
<th>Run Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Ignoring constant factors

- Express run time as $O(f(n))$
- Emphasize algorithms with slower growth rates
- Fundamental idea in the study of algorithms
- Basis of Tarjan/Hopcroft Turing Award

Why ignore constant factors?

- Constant factors are arbitrary
 - Depend on the implementation
 - Depend on the details of the model
- Determining the constant factors is tedious and provides little insight

Why emphasize growth rates?

- The algorithm with the lower growth rate will be faster for all but a finite number of cases
- Performance is most important for larger problem size
- As memory prices continue to fall, bigger problem sizes become feasible
- Improving growth rate often requires new techniques

Formalizing growth rates

- $T(n) = O(f(n))$
 \[T : \mathbb{Z}^+ \rightarrow \mathbb{R}^+ \]
 - If n is sufficiently large, $T(n)$ is bounded by a constant multiple of $f(n)$
 - Exist c, n_0, such that for $n > n_0$, $T(n) < c f(n)$
- $T(n) = O(f(n))$ will be written as: $T(n) = O(f(n))$
 - Be careful with this notation
Prove $3n^2 + 5n + 20$ is $O(n^2)$

Let $c =$

Let $n_0 =$

$T(n)$ is $O(f(n))$ if there exist $c, n_0,$ such that for $n > n_0,$

$T(n) < c f(n)$

Order the following functions in increasing order by their growth rate

a) $n \log^4 n$
b) $2n^2 + 10n$
c) $2^{\sqrt{100}}$
d) $1000n + \log^8 n$
e) n^{100}
f) 3^n
g) $1000 \log^{10} n$
h) $n^{1/2}$

Lower bounds

• $T(n)$ is $\Omega(f(n))$
 – $T(n)$ is at least a constant multiple of $f(n)$
 – There exists an $n_0,$ and $\epsilon > 0$ such that
 $T(n) > \epsilon f(n)$ for all $n > n_0$
• Warning: definitions of Ω vary

• $T(n)$ is $\Theta(f(n))$ if $T(n)$ is $O(f(n))$ and $T(n)$ is $\Omega(f(n))$

Useful Theorems

• If $\lim (f(n) / g(n)) = c$ for $c > 0$ then $f(n) = \Theta(g(n))$

• If $f(n)$ is $O(g(n))$ and $g(n)$ is $O(h(n))$ then $f(n)$ is $O(h(n))$

• If $f(n)$ is $O(h(n))$ and $g(n)$ is $O(h(n))$ then $f(n) + g(n)$ is $O(h(n))$

Ordering growth rates

• For $b > 1$ and $x > 0$
 – $\log^b n$ is $O(n^x)$

• For $r > 1$ and $d > 0$
 – n^d is $O(r^n)$