CSE 421
Algorithms
Richard Anderson
Winter 2009
Lecture 1

CSE 421 Course Introduction

• CSE 421, Introduction to Algorithms
 – MWF, 1:30-2:20 pm
 – EEB 037
• Instructor
 – Richard Anderson, anderson@cs.washington.edu
 – Office hours:
 • CSE 582
 • Monday, 3:00-3:50 pm, Thursday, 11:00-11:50 am
• Teaching Assistant
 – Aeron Bryce, paradoxal@cs.washington.edu
 – Office hours:
 • CSE 216
 • Monday, 12:30-1:20 pm, Tuesday, 12:30-1:20 pm

Announcements

• It’s on the web.
• Homework due Wednesdays
 – HW 1, Due January 14, 2009
 – It’s on the web (or will be soon)
• Subscribe to the mailing list

Text book

• Algorithm Design
• Jon Kleinberg, Eva Tardos

 • Read Chapters 1 & 2
 • Expected coverage:
 – Chapter 1 through 7

Course Mechanics

• Homework
 – Due Wednesdays
 – About 5 problems + E.C.
 – Target: 1 week turnaround on grading
• Exams (In class)
 – Midterm, Monday, Feb 9 (probably)
 – Final, Monday, March 16, 2:30-4:20 pm
• Approximate grade weighting
 – HW: 50, MT: 15, Final: 35
• Course web
 – Slides, Handouts, Recorded Lectures from 2006

All of Computer Science is the Study of Algorithms
How to study algorithms

- Zoology
- Mine is faster than yours is
- Algorithmic ideas
 - Where algorithms apply
 - What makes an algorithm work
 - Algorithmic thinking

Introductory Problem:
Stable Matching

- Setting:
 - Assign TAs to Instructors
 - Avoid having TAs and Instructors wanting changes
 - E.g., Prof A. would rather have student X than her current TA, and student X would rather work for Prof A. than his current instructor.

Formal notions

- Perfect matching
- Ranked preference lists
- Stability

Example (1 of 3)

m₁: w₁ w₂	m₁	w₁
m₂: w₂ w₁	m₂	w₂
w₁: m₁ m₂	m₁	w₁
w₂: m₂ m₁	m₂	w₂

Example (2 of 3)

m₁: w₁ w₂	m₁	w₁
m₂: w₂ w₁	m₂	w₂
w₁: m₁ m₂	m₁	w₁
w₂: m₂ m₁	m₂	w₂

Example (3 of 3)

m₁: w₁ w₂	m₁	w₁
m₂: w₂ w₁	m₂	w₂
w₁: m₁ m₂	m₁	w₁
w₂: m₂ m₁	m₂	w₂
Formal Problem

- **Input**
 - Preference lists for m_1, m_2, \ldots, m_n
 - Preference lists for w_1, w_2, \ldots, w_n

- **Output**
 - Perfect matching M satisfying stability property:

$$\text{If } (m', w') \in M \text{ and } (m'', w'') \in M \text{ then } (m' \text{ prefers } w' \text{ to } w'') \text{ or } (w'' \text{ prefers } m'' \text{ to } m')$$

Idea for an Algorithm

- m proposes to w
 - If w is unmatched, w accepts
 - If w is matched to m_2
 - If w prefers m to m_2, w accepts m, dumping m_2
 - If w prefers m_2 to m, w rejects m
 - Unmatched m proposes to the highest w on its preference list that it has not already proposed to

Algorithm

Initially all m in M and w in W are free
While there is a free m
 - w highest on m's list that m has not proposed to
 - If w is free, then match (m, w)
 - Else
 - Suppose (m_2, w) is matched
 - If w prefers m to m_2, unmatch (m_2, w)
 - Match (m, w)

Example

<table>
<thead>
<tr>
<th>m_1: w1 w2 w3</th>
<th>m_2: w1 w3 w2</th>
<th>m_3: w1 w2 w3</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_1: m2 m3 m1</td>
<td>w_2: m3 m1 m2</td>
<td>w_3: m3 m1 m2</td>
</tr>
</tbody>
</table>

Claim: The algorithm stops in at most n^2 steps

Does this work?

- Does it terminate?
- Is the result a stable matching?

- Begin by identifying invariants and measures of progress
 - m's proposals get worse (have higher m-rank)
 - Once w is matched, w stays matched
 - w's partners get better (have lower w-rank)
When the algorithms halts, every \(w \) is matched

Why?

Hence, the algorithm finds a perfect matching

The resulting matching is stable

Suppose

\[(m_1, w_1) \in M, (m_2, w_2) \in M \]

\(m_1 \) prefers \(w_2 \) to \(w_1 \)

How could this happen?

Result

- Simple, \(O(n^2) \) algorithm to compute a stable matching
- Corollary
 - A stable matching always exists

A closer look

Stable matchings are not necessarily fair

How many stable matchings can you find?

Algorithm under specified

- Many different ways of picking \(m \)'s to propose
- Surprising result
 - All orderings of picking free \(m \)'s give the same result
- Proving this type of result
 - Reordering argument
 - Prove algorithm is computing something more specific
 - Show property of the solution – so it computes a specific stable matching

Proposal Algorithm finds the best possible solution for \(M \)

Formalize the notion of best possible solution:

- \((m, w)\) is valid if \((m, w)\) is in some stable matching
- \(\text{best}(m) \): the highest ranked \(w \) for \(m \) such that \((m, w)\) is valid

\[S^* = \{(m, \text{best}(m))\} \]

Every execution of the proposal algorithm computes \(S^* \)
Proof
See the text book – pages 9 – 12

Related result: Proposal algorithm is the worst case for W
Algorithm is the M-optimal algorithm
Proposal algorithms where w’s propose is W-Optimal

Best choices for one side may be bad for the other

Design a configuration for problem of size 4:

M proposal algorithm:
- All m’s get first choice, all w’s get last choice

W proposal algorithm:
- All w’s get first choice, all m’s get last choice

But there is a stable second choice

Design a configuration for problem of size 4:

M proposal algorithm:
- All m’s get first choice, all w’s get last choice

W proposal algorithm:
- All w’s get first choice, all m’s get last choice

There is a stable matching where everyone gets their second choice

Key ideas
• Formalizing real world problem
 – Model: graph and preference lists
 – Mechanism: stability condition
• Specification of algorithm with a natural operation
 – Proposal
• Establishing termination of process through invariants and progress measure
• Under specification of algorithm
• Establishing uniqueness of solution